

NRI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE STRUCTURE FOR FOURTH YEAR B. TECH PROGRAMME

IV YEAR I SEMESTER

							So	cheme	of	
			Sche	me o	f Inst	ruction	Exa	aminat	ion	
01	0	Title of the Course	(Pe	riods	Per	Week)	(Maxi	mum N	larks)	N 6
SI. No	Course Code		L	т	Р	Total	CIA	SEA	Total	No. of Credits
1	HSS	Industrial Engineering and Management	3	0	0	3	40	60	100	3
2	PC	Introduction to CAD/CAM	3	0	0	3	40	60	100	3
3	PC	Metrology	3	0	0	3	40	60	100	3
		Open Elective – IV								
4	OE	1.Nano Technology 2.Additive Manufacturing	3	0	0	3	40	60	100	3
		Professional Floating III								
5	PE	 Unconventional Machining Process Power Plant Engineering Mechatronics Advanced Mechanics of Materials 	3	0	0	3	40	60	100	3
6	PE	 Professional Elective – IV Mechanical Vibrations Introduction to Composite materials Refrigeration & Air- conditioning Jet & Rocket Propulsion Engineering 	3	0	0	3	40	60	100	3
7	LC	Instrumentation and Metrology Lab	0	0	2	2	40	60	100	1.5
8	LC	Computational Fluid Dynamics Lab	0	0	2	2	40	60	100	1.5
9	PR	Term Paper/Internship	0	0	1	1	40	60	100	1.5
		Total	18	0	6	24	320	480	800	22.5

		Title of the Course	Sche (Pe	eme o eriods	f Inst Per	ruction Week)	S Ex (Maxi			
S1. No	Course Code		L	т	Р	Total	CIA	SEA	Total	No. of Credits
1	PE	 Professional Elective - V /MOOCS 1. Nano Technology 2. Introduction to Robotics 3. Energy Conservation and Management 4. Computer Graphics andGeometrical Modeling 	3	0	0	3	40	60	100	3
2	PE	Professional Elective – VI /MOOCS 1. Design for Manufacturing 2. Automobile Engineering 3. Metal Forming Process 4. Project Management Main Project	3	0	0	3	40	60	100	3
3	PR	Major Project				18	80	120	200	8
		Total	6	0	0	24	160	240	400	14

IV YEAR II SEMESTER

L - LECTURE T – TUTORIAL P - PRACTICAL

CIA – Continuous Internal Assessment SEA – Semester End Assessment

18A4103401 INDUSTRIAL ENGINEERING & MANAGEMENT

Lectur	re – Tu	torial:	3-	0 Hou	rs]	nterna	al Mar	ks:	40		
Credit	Credits: 3 External Marks: 60													
Prerec	luisite	s:												
Funda	menta	ls of En	iginee	ering n	nather	natics,	, proba	ability	, and s	tatistic	cs			
Cours	e Obje	ctives:					- 1	1 111		•		. 1		
1.	lo im	part fi	indai	mental	l kno	wledge	and	Skill	sets	requi	red in	the		
	ability	to on	nage	hosio	lanou	/ligiliee		other	S1011, V	nroh	ability	e the		
	abiiity statisti	cs and	pry I the	dome	ain kr	ncuge nowled	or n	Indu	strial	Manag	ement	and		
	Engine	ering.		uonn		.10 10100	.50 01	maa	ouriar .	manag	ement	unu		
2. ′	To pro	duce g	radu	ates w	vith th	ne abil	ity to	adopt	t a sys	stem a	pproa	ch to		
(design	, develo	p, im	pleme	nt, an	d inno	vate ir	ntegra	ted sys	tems t	hat in	clude		
]	people,	materi	ials, i	nform	ation,	equip	ment, a	and ei	nergy.					
3. ′	Γo ena	ble stu	dents	s to ui	nderst	and th	ie inte	ractio	ns bet	ween e	engine	ering,		
	busine	ss, tec	chnol	ogical	and	enviro	onmen	tal s	pheres	in tl	he mo	odern		
	society	hla ati	adom	ta ta	undor	atand	thoin	rala	00.000	incore	and	thoin		
4.	impact	to soci	etv a	lS lO t the n	ations	stand	alobal	conte	as eng	gineers	anu	then		
Course	impact to society at the national and global context. rse Outcomes:													
Upon	se Outcomes: a successful completion of the course, the student will be able to:													
CO1	acqui	re fund	lamer	ntal kr	nowled	ge of I	ndusti	rial ma	anagen	nent ar	nd its			
	acquire fundamental knowledge of Industrial management and its importance overview of scientific principles of management, various													
	tools of Industrial Engineering & Productivity measurement													
CO2	understand the concept of system approach and different types of													
	produ	iction la	ayout	s, pro	cess la	ayouts	and a	cquire	e the do	omain	knowl	edge		
CO2	of ma	intenar	ice	ont tru	aca of	nnodu	otion		tuder	matha	datud			
003	work	measu	reme	ent teck	pes of	produces and	design	WOIK S	study,	ompon	a stua	y, r		
	nroce	ss and	svnt	hesize	solut	ions to	achie	ve des	sired no	eds		L		
CO4	ident	ify the r	ole o	f statis	stics in	n engir	neering	g prob	lem so	lving p	rocess	. use		
	of gra	phical	techr	iques	in dat	a anal	ysis	51		81		,		
CO5	use t	he tech	nique	es, skil	ls, an	d mod	ern en	gineer	ring too	ols nec	essary	for		
	engin	eering]	pract	ice wit	h app	ropriat	te cons	sidera	tions fo	or publ	lic hea	lth		
	and s	afety, c	ultur	al, soc	cietal,	and er	ivironi	menta	l const	raints				
CO6	Use t	he tech	nique	es and	tools	necess	sary to	reduc	ce cost	of a pr	roduct			
	witho	ut com	prom	ising (Juality	, relia	bility c	s perio	ormano	ce, and	l funct	1011		
	funde	ively wi mental	l nrec	ents o	f effec	iiiiai y tive pr	oiect r	anu t nanag	ement	anu u	le			
Contri	butio	of Co	urse	Outco	mes t	oward	ls achi	ievem	ent of	Progr	am			
Outco	mes (1	– Low	, 2- I	/lediu	n, 3 –	High)				9-				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3							2	1					
CO2			3	1	2						1			
CO3			1		3	2								
CO4		3	2		1									

CO5	2		<u>3</u> 1			1	
000	2		1			3	

UNIT I

INTRODUCTION: Definition of industrial engineering (I.E), development, applications, role of an industrial engineer, differences between production management and industrial engineering, quantitative tools of IE and productivity measurement. concepts of management, importance, functions of management, scientific management, Taylor's principles, theory X and theory Y, Fayol's principles of management.

PLANT LAYOUT: Factors governing plant location, types of production layouts, advantages and disadvantages of process layout and product layout, applications, quantitative techniques for optimal design of layouts, plant maintenance, preventive, and breakdown maintenance.

UNIT II

OPERATIONS MANAGEMENT: Importance, types of production, applications, workstudy, method study and time study, work sampling, PMTS, micro-motion study, rating techniques, MTM, work factor system, principles of Ergonomics, flow process charts, string diagrams and Therbligs

VALUE ANALYSIS: Value engineering, implementation procedure, enterprise resource planning and supply chain management.

UNIT III

STATISTICAL QUALITY CONTROL: Quality control, its importance, SQC, attribute sampling inspection with single and double sampling, Control charts – X and R – charts X AND S charts and their applications, numerical examples.

TOTAL QUALITY MANAGEMENT: zero defect concept, quality circles, implementation, applications, ISO quality systems. six sigma – definition, basic concepts.

UNIT IV

RESOURCE MANAGEMENT: Concept of human resource management, personnel management and industrial relations, functions of personnel management, Job-evaluation, its importance and types, merit rating, quantitative methods, wage incentive plans, types.

PROJECT MANAGEMENT: PERT, CPM – differences & applications, critical path, determination of floats, importance, project crashing, smoothing and numerical examples.

TEXTBOOKS:

1. Industrial Engineering and management / O.P Khanna/Khanna Publishers.

2. Industrial Engineering and Production Management/MartandTelsang/S.Chand& Company Ltd. New Delhi

3. Maynard's Industrial Engineering Handbook by Harold Maynard and KjellZandin

4. Plant layout & Material Handling-Apple J.M (John Wiley Publishers)

REFERENCE BOOKS:

1. Industrial Management / Bhattacharya DK/Vikas publishers

2. Handbook of Industrial Engineering by GavrielSalvendy

3. Operations Management / J.G Monks/McGrawHill Publishers.

4.Industrial Engineering and Management Science/ T. R. Banga, S. C. Sharma, N.K.Agarwal/KhannaPublishers

5. Principles of Management /Koontz O' Donnel/McGraw Hill Publishers.

6. Statistical Quality Control /Gupta/Khanna Publishers

7. Industrial Engineering and Management /NVS Raju/Cengage Publishers

E-RESOURCES:

http://compass.astm.org/CUSTOMERS/license.html

https://ezproxy.wpi.edu/login?url=https://www.engineeringvillage.com/search/quick.url?database=3

18A4103402 INTRODUCTION TO CAD/CAM

Lectur	re – Tu	torial:	3-	0 Hou	rs				Interna	al Marl	ks:	40		
Credit	redits: 3 External Marks: 60													
Prerec	luisite	s:												
;	Student	ts are e	xpecte	d to ha	ave kno	wledge	e on:							
1 1	Comput	or nori	nheral	s lilza I	nnut o	nd out	nut der	vices						
1.	Various	displa	priciai		represe	ntatior	put ut	vices	Trans	sformat	ions	in the		
4.	Comput	er Gra	nhice	ices, i	cpicse	intatioi	i incu	1005 0		siormat	.10115			
3	commo	de lie	phies	ר א חכ	D drow	zinas ir	$the \Delta$		Deoftw	ore				
3. C	Interact	ive Cor	nnuter	2D & J	Duran	illigo II		utoch	D SOILW	arc				
т. Metal (niciaci Nitting	and Ma	nputti	Tools	nes									
Cours	e Ohier			10015										
1.	To impa	rt fund	lamen	tals of	compu	ter aid	ed desi	gn an	d manu	facturir	۱g.			
2. '	To learn	12D &	3D ti	ansfor	mation	is of th	ne basi	c enti	ties like	line. c	ircle.	ellipse		
	etc										,			
3. ′	To und	erstand	1 the	funda	mental	s used	to cr	eate a	and ma	nipulat	te geo	metric		
models														
models 4. To get acquainted with the basic CAD software designed for geometric modeling														
5. ′	To learr	n worki	ng prii	nciples	of NC	machir	nes. CN	IC con	trol and	l part p	rogra	mming		
5. To learn working principles of NC machines, CNC control and part programming & DNC														
6. ′	To und	erstand	l conc	ept of	Group	Techn	ology.	FMS a	and CIN	<i>I</i> and i	nterp	ret the		
i	importa	nce of	CAOC				8,,,				F			
Cours	importance of CAQC.													
Upon	Course Outcomes: Upon successful completion of the course, the student will be able to:													
CO1	descri	be bas	ic stru	acture	of CA	D wor	kstatio	n. Me	morv t	vpes, in	nput/	output		
001	device	sand d	isplay	device	s and c	comput	er grap	ohics	- 5 -) 1)	1/	T		
CO2	acquir	re the l	cnowle	dge of	geome	etric m	odeling	g and	execute	the ste	eps re	quired		
	inCAD) softwa	are for	develo	ping 2I	D & 3D	model	s and	perform	transfo	ormati	ons		
CO3	under	stand	the co	onstruc	ction o	of data	base r	nodels	s and g	geometr	ric mo	odeling		
CO4	under	es stand k	now to	write	the nat	rt nrog	rams f	or diff	erent m	odels h	w 110ir	og nart		
COT	progra	amming	r r	WIIIC	the par	it prog		Ji uiii		oucis b	y usii	ig part		
CO5	explai	n featu	res of	Group	Techno	ology (C	GT), CA	APP &	FMS					
CO6	illustr	ateCAQ	C and	CIM c	oncept	s	,,							
Contri	ibution	of Co	urse	Outco	mes t	oward	s achi	ieven	ent of	Progra	am			
Outco	mes (1	– Low	, 2- N	lediu	n, 3 –	High)				•				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3	2	1	2	3	1	-	-	_	-	-	1		
CO2	3	2	1	2	3	1	-	_	_	_	_	1		
CO3	2	2	1	2	3	1	_	_	_	-	_	1		
CO4	2	2	1	2	3	2	-	-	_	_	-	1		
CO5	2	2	1	2	3	2	-	-	_	_	-	1		
C06	2	1	3	-	2	1	-	-	-	-	-	1		
					τ	JNIT I								
Compu	iters in	indust	rial m	anufac	turing,	, produ	ict cyc	le, CA	D / CA	M Hare	dware	, basic		
· · ·					• ,	- ·	1.	1 1	•					

structure, CPU, memory types, input devices, display devices, hard copy devices,

storage devices.

COMPUTER GRAPHICS: Raster scan graphics coordinate system, database structure for graphics modeling, transformation of geometry, 3D transformations, mathematics of projections, clipping, hidden surface removal

GEOMETRIC MODELING: Requirements, geometric models, geometric construction models, curve representation methods, surface representation methods, modeling facilities desired.

UNIT II

DRAFTING AND MODELING SYSTEMS: Basic geometric commands, layers, display control commands, editing, dimensioning and solid modeling.

PART PROGRAMMING FOR NC MACHINES: NC, NC modes, NC elements, CNC machine tools, structure of CNC machine tools, features of Machining center, turning center, CNC Part Programming: fundamentals, manual part programming methods, Computer Aided Part Programming. Direct Numerical Control

UNIT III

GROUP TECHNOLOGY: Part family, coding and classification, production flow analysis, types and advantages. Computer aided processes planning – importance, types.

FMS: Introduction, Equipment, Tool management systems, Layouts, FMS Control

UNIT IV

COMPUTER AIDED QUALITY CONTROL: Terminology used in quality control, use of computers in Quality control. Inspection methods- contact and noncontact types, computer aided testing, integration of CAQC with CAD/CAM

COMPUTER INTEGRATED MANUFACTURING SYSTEMS: Types of manufacturing systems, machine tools and related equipment, material handling systems, material requirement planning, computer control systems, human labour in manufacturing systems, CIMS benefits.

TEXTBOOKS:

- 1. CAD/CAM: Principles and Applications: Rao P N, Tata McGraw Hill Higher Education P Ltd 2002
- 2. CAD/CAM: Groover, Mikell P and Zimmer's Emory W, Prentice Hall India (P) Ltd, 2001
- 3. CAD/CAM/CIM: Radhakrishnan P, New Age International Publishers 1994

REFERENCE BOOKS:

- 1. Mastering CAD / CAM / Ibrahim Zeid / McGraw-Hill
- 2. Principles of Computer Aided Design and Manufacturing / FaridAmirouche / Pearson
- 3. Computer Numerical Control Concepts and programming / Warren S Seames / Thomson learning, Inc
- 4. Product manufacturing and cost estimation using CAD/CAE/ KuangHua Chang/Elsevier Publishers
- 5. CAD/CAM Concepts & applications/Alavala/PHI

E-RESOURCES:

https://www.coursera.org/

https:/	/www.udemy.com/	!

IV B. Tech I Semester 18A4103403 METROLOGY Lecture – Tutorial: 3-0 Hours **Internal Marks:** 40 **External Marks: Credits:** 3 60 **Prerequisites:** Metallurgy, Machine Design, Physics **Course Objectives:** 1. Learn the system of limits, fits, tolerances, and gauge design 2. Know about the linear and angular measuring instruments. 3. know about optical and comparator measuring instruments 4. Understand the principles of surface roughness measurement 5. Understand the flatness measurement and principles of interferometry 6. Learn the gear and screw thread measurement. **Course Outcomes:** Upon successful completion of the course, the student will be able to: Design limit gauges, tolerances, and fits for selected product quality. CO1 Evaluate various devices for linear and angular measurements. CO2 Outline the operation of optical and comparator measuring instruments CO3 CO4 Evaluate the surface roughness parameters. Demonstrate the flatness and interferometer measuring instruments CO5 CO6 Outline the working of gear and screw thread measuring instruments. **Contribution of Course Outcomes towards achievement of Program** Outcomes (1 - Low, 2- Medium, 3 - High) PO 2 3 4 5 6 7 8 9 10 11 12 1 2 CO1 1 1 3 CO21 3 2 1 CO3 2 1 3 1 CO4 3 2 1 1 3 2 CO5 1 1 3 3 2 1 CO6

UNIT I

SYSTEMS OF LIMITS AND FITS:

Introduction, nominal size, tolerance, limits, deviations, fits –Unilateral and bilateral tolerance system, hole and shaft basis systems- interchangeability, deterministic & statistical tolerances, selective assembly. International standard system of tolerances, selection of limits, and tolerances for correct functioning.

LIMIT GAUGES: Taylor's principle – design of go and no-go gauges; plug, ring, snap, gap, taper, profile, and position gauges

LINEAR MEASUREMENT: Length standards, end standards, slip gauges- calibration of the slip gauges, dial indicators, micrometers.

UNIT II

MEASUREMENT OF ANGLES AND TAPERS: Different methods – bevel protractor, angle slip gauges- Angle Dekker- spirit levels- sine bar- sine table, rollers, and spheres used to measure angles and tapers.

COMPARATORS: Types - mechanical, optical, electrical, and electronic, pneumatic comparators and their uses.

OPTICAL MEASURING INSTRUMENTS: Tools maker's microscope and uses - autocollimators, optical projector, optical flats, and their uses.

UNIT III

SURFACE ROUGHNESS MEASUREMENT: Differences between surface roughness and surface waviness Numerical assessment of surface finish-CLA, Rt., R.M.S. Rz, R10 values, Method of measurement of surface finish – Profilograph, Talysurf,

INTERFEROMETRY: Interference of light, Michelson's interferometer, NPL flatness interferometer, and NPL gauge interferometer, laser interferometers, types, DC and AC laser interferometers, applications.

FLATNESS MEASUREMENT: Measurement of flatness of surfaces- instruments usedstraight edges- surface plates autocollimator

UNIT IV

GEAR MEASUREMENT: Nomenclature of gear tooth, tooth thickness measurement with gear tooth vernier & flange micrometer, pitch measurement, total composite error and tooth to tooth composite errors, rolling gear tester, involute profile checking

SCREW THREAD MEASUREMENT: Elements of measurement – errors in screw threads- the concept of virtual effective diameter, measurement of effective diameter, angle of thread and thread pitch, and profile thread gauges.

TEXTBOOKS:

1. Engineering Metrology by Mahajan / Dhanpat Rai Publishers.

2. Dimensional Metrology/Connie Dotson/Cengage Learning.

3. Engineering Metrology by R.K.Jain / Khanna Publishers.

4. Engineering Metrology by I.C. Gupta / Dhanpat Rai Publishers.

REFERENCE BOOKS:

1. Engineering Metrology by KL Narayana, Scitech publishers.

2. Engineering Metrology and Measurements by NV Raghavendra, LKrishna Murthy, Oxford publishers.

3. Precision Engineering in Manufacturing by R.L.Murthy / New Age.

4. BIS standards on Limits & Fits, Surface Finish, Machine Tool Alignment, etc.

E-RESOURCES:

<u>https://www.npl.co.uk/resources</u> <u>https://iopscience.iop.org/journal/0957-0233</u>

Course Code: ADDITIVE MANUFACTURING (Open Elective – III)

Lectur	e – Tu	torial	: 3-	0 Hou	rs			Ι	nterna	al Mar	ks:	40	
Credit	s:		3					E	xtern	al Mar	ks:	60	
Prereg	uisite	s:											
Introdu	iction t	o CAD	/CAM,	Materi	al scier	nce,							
Course	e Obje	ctives	:										
1. \$	Studen	t will o	develop	a com	mprehe	ensive	unders	standin	g of th	ne fund	lament	als of	
8	additive	e manu	factur	ing.									
2. \$	Studen	t will a	cquire	knowl	edge or	n the a	spects	of mat	erials a	and the	eir prop	perties	
ı	used in	AM.											
3. \$	Studen	t will	develo	p a d	leep u	ndersta	anding	of AN	A proc	ess, m	nonitor	ing &	
(controll	ling the	ese pro	cesses	•								
4. \$	Studen	t will re	ecogniz	the the t	ools us	sed in I	RP.						
5. Student will learn and identify various fields applying AM. Student will comprehend and present case studies on AM.													
Student will comprehend and present case studies on AM.													
Course Outcomes:													
Upon successful completion of the course, the student will be able to:													
CO1	Paraphrase the fundamentals of AM.												
CO2	Interpret the materials used in AM.												
CO3	Illustrate the AM processes and analyze parameters controlling the AM												
CO4	Proces	ss. e the to		ed for F	2D								
CO_{\pm}	Analy	ze the a	annlica	tion a	reas of	АМ							
CO5	Discu	ss and	analva		studie	s on Al	М						
Contri	butio	of Co			omes t	oward	ls achi	ievem	ent of	Progr	am		
Outco	mes (1	– Lov	v. 2- I	/lediu	m. 3 –	High)				8-	4		
	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3		1										
CO2	3	1	1									1	
CO3			1									1	
CO4			1	1	3	1						1	
CO5	CO5 1 1 3 1 1												
CO6		1		1	3							1	
					J	JNIT I	-			·			
Introdu machin	uction: ung), N	Revie eed - D	ew of Develop	gener ment o	al ma	nufact tive Ma	uring inufact	approa uring 7	aches Technol	(Castin logy -Pi	ıg, We rinciple	elding, e – AM	

Process Chain- Classification - Rapid Prototyping- Rapid Tooling - Rapid Manufacturing - Applications- Benefits - Case studies.

Materials used for AM: Types of materials used for AM, Use of multiple materials, multifunctional and graded materials in AM, Role of solidification rate, Evolution of non-equilibrium structure, Structure property relationship, Grain structure and microstructure

UNIT II

Process monitoring and Control for AM:

Defects, Geometry, Temperature, Composition, Phase Transformation

Additive Manufacturing Systems: Liquid based: SLA, SGC; Solid based: LOM, FDM; Powder based: SLS, 3DP

UNIT III

RAPID TOOLING: Introduction to rapid tooling (RT), conventional tooling Vs RT, Need for RT. rapid tooling classification: indirect rapid tooling methods: spray metal deposition, RTV epoxy tools, Ceramic tools, investment casting, spin casting, die casting, sand casting, 3D Keltool process. Direct rapid tooling: direct AIM, LOM Tools, DTM Rapid Tool Process, EOS Direct Tool Process and Direct Metal Tooling using 3DP.

UNIT IV

Application of AM for various Industries:

Aerospace, Automobile, Oil and Gas, Agriculture.

Case Studies: (To be presented by students)

TEXTBOOKS:

- 1. Rapid prototyping: Principles and Applications /Chua C.K., Leong K.F. and LIM C.S/World Scientific
- 2. Ian Gibson, David W. Rosen, Brent Stucker, Additive manufacturing technologies: rapid prototyping to direct digital manufacturing Springer, 2010.

REFERENCE BOOKS:

- 1. Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third edition, World Scientific Publishers, 2010.
- 2. Rapid Manufacturing/ D. T. Pham and S. S. Dimov/ Springer/
- 3. Wholers Report 2000/Terry Y Wholers/ WholersAassociates.
- 4. Andreas Gebhardt, "Understanding Additive Manufacturing," Hanser, 2011, ISBN 9783446425521.

E-RESOURCES:

https://libraryblogs.is.ed.ac.uk/eresources/tag/3d-printing-and-additivemanufacturing/

https://www.journals.elsevier.com/additive-manufacturing

18A4103511 UNCONVENTIONAL MACHINING PROCESSES

(Professional Elective – III)

Lectu	Lecture – Tutorial:2-1 HoursInternal Marks:40Credits:3External Marks:60													
Credit	edits: 3 External Marks: 60 erequisites:													
Prerec	luisite	s:												
Manufa	acturin	g Techi	nology	I, Manu	ufactui	ring Te	chnolo	gy II, E	nginee	ring Me	chanic	s		
Cours	e Obje	ctives	:											
1. Stu	dent w	ill be	able to	o ident	tify the	e class	ificatio	on of ı	inconv	entiona	l mac	nining		
pro	cesses.							_	_	_				
2. Stu	dent wi	ll be to	o under	stand	the pri	nciple,	mecha	anism o	of meta	l remov	al of va	arious		
	dent u	rill ot	idv th	a vori		rocess	noror	notora	and t	hoir of	fect o	n the		
5. Stu		m Su	ing the		us p	onvont	paran	icici s	anu t			ii uie		
4 844	iponen damt mi				des uno				ng pro	cesses.				
4. Stu		II desig	gn varie	bus Hy		and P	neuma		uits.			1		
a student will apply basics of digital electronics for various applications of logic gates.														
gate	gates.													
6. Stu	6. Student will relate different logic gates and their role in Programmable logic													
con	trollers	•												
Course Outcomes:														
Upon :	Upon successful completion of the course, the student will be able to:													
CO1 Describe unconventional machining methods and working principles of														
000	mecha	anical	energy-	based	proces	ses	•	• •	•		•			
CO2	Demo debur	nstrate ring pr	e electro cocess.	o-chem	ncal m	achinii	ng prin	ciples :	in grind	ling, ho	oning a	nd		
CO3	Expla	in prin	ciple, v	vorking	g, appli	ications	s and v	rarious	charac	teristic	s of ele	ectric		
	discha	arge m	achinir	ng proc	ess.									
CO4	Identi paran	fy the o neters,	differer and ac	ce betv curacy	ween E 7.	CBM an	d LBM	based	on its	charact	eristic	s,		
CO5	Expla	in the	applica	tions, o	charac	teristic	s and j	process	s of pla	sma aro	c mach	ining		
	based	on MF	RR and	accura	acy.				_					
CO6	Comp	are dif	ferent t	ypes of	f mech	anical	finishiı	ng proc	cess.					
Contri	ibutio	n of C	ourse	Outco	mes t	oward	s ach	ievem	ent of	Progra	am			
Outco	mes (1	– Lo v	v, 2- N	lediu	n, 3 –	High)	1	1						
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		
	1 2 3 4 5 6 7 8 9 10 11 12													
CO1	· 3 1 2													
CO2	3			1	2									
CO3	3			1	2									
CO4	3			1	2									
CO5	3			1	2									
CO6	3			1	2									
					τ	JNIT I								

Introduction: Need for non-traditional machining methods-classification of modern machining processes – considerations in process selection, applications.

Abrasive jet machining, Water jet machining– Elements of the process, mechanics of material removal, MRR process parameters, economic considerations, applications, and limitations.

UNIT II

Abrasive water jet machining and Ultrasonic machining: Basic principles, equipment, process variables, mechanics of material removal, MRR, application and limitations.

Chemical machining and Electro-Chemical machining (CHM and ECM): Etchants – Maskant - techniques of applying maskants - Process Parameters – Surface finish and MRR-Applications. Principles of ECM- equipment's-Surface Roughness and MRR - Process Parameters- ECG and ECH - Applications.

UNIT III

Thermal Metal Removal Processes: General principle and applications of Electric Discharge Machining, Electric Discharge Grinding and wire EDM – Mechanics of metal removal in EDM, Process parameters, selection of tool electrode and dielectric fluids, surface finish and machining accuracy, applications.

Electron Beam Machining, Laser Beam Machining: Basic principle and theory, mechanics of material removal, process parameters, efficiency & accuracy, applications

UNIT IV

Plasma Machining: Application of plasma for machining, metal removal mechanism, process parameters, accuracy and surface finish and other applications of plasma in manufacturing industries.

Advanced Nano Finishing Processes: Magnetic abrasive finishing, abrasive flow finishing, working principles, equipments, effect of process parameters, applications, advantages and limitations Electro stream drilling and shaped tube electrolytic machining

TEXTBOOKS:

1. Fundamentals of Machining Processes-Conventional and non – conventional processes/ Hassan Abdel – Gawad El-Hafy/CRC Press-2016.

2. Advanced Machining Processes /Vijay.K. Jain/Allied Publishers Pvt. Ltd., New Delhi, 2007

REFERENCE BOOKS:

1. Modern Machining Process / Pandey P.C. and Shah H.S./ TMH.

- 2. New Technology / Bhattacharya A/ the Institution of Engineers, India 1984.
- 3. Non-Traditional Manufacturing Processes / Benedict /
- 4. Advanced Methods of Machining/Mc Geough/Chapman and Hall, London, 1998

5. Material and Processes in Manufacturing/ Paul De Garmo, J.T.Black, and Ronald.

A.Kohser/Prentice Hall of India Pvt. Ltd., 8thEdition, New Delhi , 2001

E-RESOURCES:

http://www.sasurieengg.com/e-course-material/MECH/III-

<u>ear%20Sem%206/ME2026%20UMP.pdf</u>

http://home.iitk.ac.in/~nsinha/Non-traditional-machining.pdf

Course Code: POWER PLANT ENGINEERING (Professional Elective – III)

Lectur	e – Tutori	i al: 3-	-0 Hou	rs			Ι	nterna	al Mar	ks:	40	
Credit	s:	3					E	Extern	al Mar	ks:	60	
Prereg	uisites:											
Basic T	hermodyna	amics, Ap	plied T	hermo	dynam	ics & IO	C Engi	nes and	l Gas T	urbin	2.	
Course	e Objectiv	es:										
1. 7	Го impart tl	he Knowl	ledge of	fsourc	es of er	nergy						
2. 7	Fo enable th	ne Stude	nts the	Conce	pts of I	Differer	nt Powe	er Plant	S			
3. 7	Го impart tl	he Conce	pts of I	Hydroe	lectric	Power 1	Plant					
4. 7	Γo imbibe t	he Know	ledge of	f Nucle	ar Pow	er Stati	ion					
5. 7	Го enable	the Stu	dents t	the Co	ncepts	of Po	wer P	lant In	strume	entatio	n and	
(Control											
6. 7	Fo impart tl	he Knowl	ledge of	Power	· Plant]	Econor	nics					
o. To impart the Miowledge of Fower Flant Debilomies												
Course	e Outcom	es:										
Upon s	successful	l compl	etion o	of the	cours	e, the	stude	nt wil	l be at	ole to	:	
CO1	Explain va	arious ty Rejection	pes of C System	Coals a ns	nd Illus	strate I	Dust C	ollector	, Coolir	ng Tow	ver	
CO2	Outline th	e Diesel	and Ga	ns Is Turb	ine Pov	ver Pla	nt					
CO3	Explain H	vdrologic	al Cvcl	e, inte	rflow m	easure	ments	from H	vdrogr	aphs		
CO4	Explain W	orking P	rinciple	e of Nu	clear P	ower Pl	ants, I	Nuclear	Fuels	and R	eactor	
	Operation	s	1				,					
CO5	Explain C	ost Facto	ors, Loa	d and	Power	Distrib	ution I	Factors				
CO6 Summarize the impact of Power Plants on the Environment												
· · ·												
Contribution of Course Outcomes towards achievement of Program												
Outco	Outcomes (1 – Low, 2- Medium, 3 – High)											
	PO PC) PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	
	1 2	3	4	5	6	7	8	9	10	11	12	

	PO 1	PO 2	PO 3	PO 4	PO 5	P0 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	1	1	1	2	3	3	2				3
CO2	3	1	2	1	2	2	2	3				2
CO3	2	3	1	2	1	3	2	2				2
CO4	2	2	1	2	2	2	1	2				3
CO5	2	3	2	1	2	3	2	2				2
CO6	3	1	1	2	1	2	1	1			2	3
					T	INIT I						

Introduction to the sources of energy – resources and development of power in India. **STEAM POWER PLANT:** Plant layout, working of different circuits, fuel and handling equipment, types of coals, coal handling, choice of handling equipment, coal storage, Combustion: properties of coal – overfeed and underfeed fuel beds, traveling grate stokers, spreader stokers, retort stokers, pulverized fuel burning system and its components, ash handling systems, Dust collectors – cooling towers and heat rejection.

UNIT II

DIESEL POWER PLANT: Plant layout with auxiliaries – fuel supply system, air starting equipment, supercharging.

GAS TURBINE PLANT: Introduction – classification - construction – layout with auxiliaries, combined cycle power plants and comparison.

HYDRO ELECTRIC POWER PLANT: Waterpower – hydrological cycle / flow measurement – drainage area characteristics – hydrographs – storage and pondage – classification of dams and spill ways.

UNIT III

NUCLEAR POWER STATION: Nuclear fuel – breeding and fertile materials – nuclear reactor – reactor operation - Pressurized water reactor, boiling water reactor, sodium-graphite reactor, fast breeder reactor, homogeneous reactor, gas cooled reactor, radiation hazards and shielding – radioactive waste disposal.

COMBINED OPERATIONS OF DIFFERENT POWER PLANTS: Introduction, advantages of combined working, load division between power stations, storage type hydro-electric plant in combination with steam plant, run-of-river plant in combination with steam plant, pump storage plant in combination with steam or nuclear power plant, co-ordination of hydro-electric and gas turbine stations, co-ordination of hydro-electric and nuclear power stations, co-ordination of different types of power plants.

UNIT IV

POWER PLANT INSTRUMENTATION AND CONTROL: Importance of measurement and instrumentation in power plant, measurement of water purity, gas analysis, O_2 and CO_2 measurements, measurement of smoke and dust, measurement of moisture in carbon dioxide circuit,

POWER PLANT ECONOMICS AND ENVIRONMENTAL CONSIDERATIONS: Capital cost, investment of fixed charges, operating costs, general arrangement of power distribution, load curves, load duration curve, definitions of connected load, maximum demand, demand factor, average load, load factor, diversity factor –related exercises. effluents from power plants and Impact on environment – pollutants and pollution standards –methods of pollution control.

TEXTBOOKS:

1. A course in Power Plant Engineering /Arora and Domkundwar/Dhanpatrai & Co.

2. Power Plant Engineering / P.C.Sharma / S.K.Kataria Pub

REFERENCE BOOKS:

1. Power Plant Engineering: P.K.Nag/ II Edition /TMH.

- 2. Power station Engineering ElWakil / McGrawHill.
- 3. An Introduction to Power Plant Technology / G.D. Rai/Khanna Publishers
- 4. Power Plant Engineering, P.K. Nag, Tata McGraw Hill.

5. Power Plant Engineering, F.T. Morse, Affiliated East-West Press Pvt. Ltd, New Delhi/Madras

6.Power Plant Technology El-Vakil, McGraw Hill.

E-RESOURCES:

https://www.freebookcentre.net/Mechanical/Power-Plant-Engineering.html http://library.ddn.upes.ac.in:8081/upeslib/upeslib/links/ebooks_power.html

Course code-MECHATRONICS (Professional Elective – III)

Lectur	e – Tu	torial	1: 2-1 Hours Internal Marks:							40			
Credit	s:		3					E	xtern	al Mar	ks:	60	
Prereg	uisite	s:											
Fundar	nentals	s of Eng	gineeri	ng Mat	hemati	ics, Ele	ctronic	Device	es and	Circuit	s, Digi	tal	
Electro	nics												
Course	e Obje	ctives	•										
1. Stu	dent wi	ll be ab	ole to i	ntrodu	ce to in	ntegrati	ve nati	are of N	Mechat	ronics.			
2. Stu	dent wi	ll be ex	posed	to the	variou	s types	of sens	sors ar	nd tran	sducer	s.		
3. Stu	dent wi	ll unde	rstand	l the fu	Indame	entals c	of solid-	state e	electron	ic devi	ces.		
4. Stu	dent wi	ll desig	n vario	ous Hy	draulic	and P	neuma	tic circ	uits.				
5. Stu	dent w	ill app	ly bas	ics of	digital	electr	onics f	or var	ious aj	pplicati	ons of	logic	
gate	es.												
6. Stu	dent w	rill rela	te dif	ferent	logic g	gates a	and th	eir rol	e in F	rogran	ımable	logic	
con	trollers	•											
Course	e Outc	omes:											
Upon successful completion of the course, the student will be able to:													
CO1 Describe mechatronics system and their elements and levels													
CO2	CO2 Differentiate various sensors and transducers												
CO3	Under	stand s	solid s	tate ele	ectronio	c device	es, ana	log sigi	nal con	ditionii	ng		
CO4	Demo	nstrate	hydra	ulic ar	ıd pneı	amatic	actuat	ing sys	tems				
CO5	Under	stand l	Digital	electro	onics a	nd Log	ic gates	3					
CO6	Expla	in micr	o cont	rollers	and ap	plicati	ons of l	PLC					
Contri	bution	ı of Co	ourse	Outco	omes t	oward	ls achi	evem	ent of	Progr	am		
Outco	mes (1	. – Lov	v, 2- I	/lediu	m, 3 –	High)							
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3												
CO2	3												
CO3	CO3 3												
CO4	2		2		2								
CO5	3												
CO6	2				2								
					τ	JNIT I							
Introd	action:	Defini	tion of	Mech	atronic	s, Elen	nents 8	6 Level	s of Me	echatro	nics sy	vstem,	
mechat	ronica	design	nroce		tem M		ment 9	watem	Contr	ol evet	om Tr	nes of	

mechatronics design process, System, Measurement System, Control system, Types of control system, Advantages, and disadvantages of mechatronics systems

Sensors and Transducers: Static and Dynamic characteristics of Transducers, displacement, position, proximity, velocity, motion, force, acceleration, torque, fluid pressure, liquid flow, liquid level, temperature and light sensors.

UNIT II

Solid state Electronic Devices: PN junction diode, BJT, FET, DIAC, TRIAC and LEDs. Analog signal conditioning - operational amplifiers, noise reduction, types of filters.

Process Controllers: Controller principle, Two-position, Proportional, Integral, Derivative, PI, PD & PID controllers

UNIT III

Hydraulic and Pneumatic Actuating Systems: Fluid systems, Hydraulic systems, and pneumatic systems, Comparison of hydraulic and pneumatic systems, components, control valves, Characteristics and their limitations, Design of Hydraulic and Pneumatic circuits

Digital Electronics and Systems: Digital logic control, Numbering system, Boolean algebra, Logic gates, Karnaugh maps, Applications of logic gates.

UNIT IV

Microcontrollers and Programmable Logic Controllers: Architecture of Microprocessor, Microcontroller, Basic structure of a PLC, PLCs versus Computers, PLC Programming using ladder diagrams, logics, latching, sequencing, timers, relays and counters,

Dynamic models and analogies: Mechanical, Electrical, fluid, and thermal systems, Pneumatic and Hydraulic systems.

TEXTBOOKS:

- 1. MECHATRONICS Integrated Mechanical Electronics Systems/KP Ramachandran, GK Vijaya Raghavan & MS Balasundaram/WILEY India Edition
- 2. Mechatronics Electronics Control Systems in Mechanical and Electrical Engineering, WBolton, 3/e Pearson Education Press, 2005.

REFERENCE BOOKS:

- 1. Devadas Shetty and Richard A Kolk, Mechatronic System Design, 2/e, Cengage learning, 2010.
- 2. Clarence W. de Silva, Mechatronics an Integrated Approach, CRC Press, 2004.
- 3. Mechatronics, Robert H Bishop, CRC Press, 2005.
- 4. James J Allen, Micro Electromechanical Systems Design, CRC Press Taylor & Francis group, 2005.
- 5. Ganesh S Hedge, Mechatronics, Jones & Bartlett Learning, 2010.
- 6. Mechatronics Principles and Application / Godfrey C. Onwubolu/Elsevier, Indian print
- 7. Mechatronics N. Shanmugam / Anuradha Agencies Publishers.
- 8. Mechatronics /Smaili A, Mrad F/ Oxford Higher Education, Oxford University Press

E-RESOURCES:

https://mechatronics.colostate.edu/resources/ https://esearch.sc4.edu/mechatronics/web

Course Code: ADVANCED MECHANICS OF MATERIALS (Professional Elective – III)

Lectur	re – Tu	itorial	l: 3-	0 Hou	rs				Intern	al Mar	ks:	40			
Credit	s:		3	0 110 4	- 0				Extern	al Mar	ks:	60			
Prereg	uisite	s:													
Fundar Materia	nentals als	s of En	gineeri	ng Mat	hemat	ics, En	gineeri	ng N	lechanics	, Stren	gth of				
Course	e Obje	ctives	:												
1. 1	Find De	eflectio	ns in fi	xed an	d cont	inues t	beams								
2. 1	Unders	tandin	g stres	ses in t	thick c	ylinder	s								
3. (Curved	beam	stresse	es with	differe	nt cros	s secti	ons							
4. \$	Strain e	energy	under	differen	nt load	ing cor	dition	s							
Course	e Outc	omes	:												
Upon :	succes	sful c	omple	etion o	of the	cours	e, the	stu	dent wil	l be al	ole to	:			
CO1	Calcu	late de	flection	ns in fiz	xed and	d conti	nuous	bear	ns						
CO2	Deter	mine tl	he stre	sses in	thick of	cylinde	rs								
CO3	Analy	se the	curved	beams	s for sta	resses	with di	ffere	ent cross s	section	S				
CO4	Calcu	late th	e stres	ses in 1	rotating	g disks									
CO5	Deter	mine tl	he Stra	in Ene	rgy un	der sta	tic and	l gra	dually ap	plied lo	ad				
CO6	Deter	mine tl	he Stra	in Ene	rgy un	der imj	pact an	id sh	lear stres	ses					
Contri	Contribution of Course Outcomes towards achievement of Program														
Outco	mes (1	l – Lo v	w, 2- I	Aediu	m, 3 –	High)									
	PO	PO	PO	PO	PO	PO	PO	PC	D PO	PO	PO	PO			
0.01	1	1 2 3 4 5 6 7 8 9 10 11 12													
COI	3	3	3	1								2			
CO2	3	3	3	1								2			
CO3	3	3	3	1								2			
CO4	3	3	3	1								2			
CO5	3	3	3	1								2			
CO6	3	3	3	1								2			
/m1 · 1	1. 1	T /	1 /				1 0 1	1 •	1 1 11/T	• • •	1 \				
Thick	cylinde	ers: Int	roduct	10n, St	resses	in thic	k Cylin	ldr1C	al shell(La	ame's t	heory)	,			
Radial	Deflect	ion, St	resses	in Com	pound	l Cylind	lers								
						. .				c	1 1	1			
Fixed	beams	and	Clon	uous	beams	s: Intro	oductic	on, a	analysis Ponto Po	of fixe	d bea	ms by			
momen	its of in	ertia	Ciap	eyron s	theory		unee	mon	lients, de	ans w		mstant			
momen		ier tia			τ	ΙΝΙΤ Ι	[
Curved	l beam	s: Stre	esses in	ı Bean	us of s	mall a	nd larg	e in	itial curva	ature. 7	The W	/inkler-			
Bach t	heory.	Assun	options	for st	tresses	in th	e bend	ling	of curved	1 bars.	Stres	sses in			
Crane I	Hook a	nd C-C	lamp v	vith Re	ctangu	ılar. cir	cular a	and t	rapezoida	al cross	sectio	on			
Contri	Contributed Strasses: Introduction Poteting Ring Rotating Disc. Rotating Disc. of														
Centri		oth	:5 : 111[]	Juncti	011, KO	naung	Ring,	RUI	ating Dise	c, rota	ung I	DISC OI			
uniform	n sureng	gun				NTT/T TT	7								
Strain	Fnore	· · Doc	lionac	Dreaf			l roin c	n 0 m ~	t atomad	noha	d.,1	on the			
Scrain	Energ	y :Resi	mence,	PT00I	Resille	nce, S	nam ei	nerg	y stored i	ui a DO	uy wr	ien tue			

load is applied gradually, Load is applied suddenly, Load is applied with impact, Strain energy stored in a body due to shear stress

TEXTBOOKS:

1. S.S. Rattan, "Strength of Materials", 2nd edition, Tata Mc-Graw Hill Private Limited, New Delhi, 2012

2. "Strength of Materials", Sadhu sing.

REFERENCE BOOKS:

1. James M. Gere, "Mechanics of Materials", 7th edition, Cengage learning India, 2010.

2. S. B. Junarkar, Mechanics of Structures, Charotar Publishers, 2010

3. AdarshSwaroop, "Mechanics of Materials" 1st edition, New Age International Pvt. Ltd, 2012.

4. Popov, Mechanics of Solids, 2/e, New Pearson Education, 2015.

E-RESOURCES:

http://www.oup.com/academic/product/advanced-mechanics-of-materials-780195143720?lang=en&cc=cn

https://www.coursera.org/courses?query=mechanics%20of%20materials

Course Code: NANOTECHNOLOGY (Open Elective – IV)

Lectur	e – Tu	e – Tutorial: 3-0 Hours								al Marl	ks:	40
Credit	s:		3					E	Extern	al Mar	ks:	60
Prereg	uisite	s:										
Physics	, Chem	istry, I	Biology	r, and I	Mathen	natics						
Course	e Obje	ctives	:									
1. \$	Studen	ts wil	l knov	v abou	it bar	nd stru	acture	, histe	ory, ar	nd app	licatio	ons of
1	nanote	chnolo	ogy.									
2. \$	Studen	ts wil	l knov	v abou	it the	proper	ties o	f diffe	rent m	aterial	s and	their
1	oehavio	our at	nanos	scale.								
3. \$	Studen	ts wil	l knov	v abou	t char	acteri	zation	techn	iques	and to	ols us	sed at
1	the nanoscale.											
4. \$	4. Students will know about the synthesis and fabrication of materials at											
1	nanosc	ale.										
5. \$	Studen	ts wil	l knov	v aboı	ıt app	licatio	ns of	silicor	ı carbi	de, alı	amina	., and
2	zirconia	a.										
6. 8	Studen	ts wil	l knov	v abou	it the	applie	cations	s of n	anoma	terials	in va	arious
1	ields.											
Course	e Outc	omes									_	
Upon s	succes	sful c	omple	tion c	of the	cours	e, the	stude	ent wil	l be ab	le to:	
COI	Expla	in solic	is and	their b	and sti	ructure	and a	pplicat	tions of	nanote	chnolo	ogy.
CO2	Demo	nstrate	about	prope	rties of	mater	ials and	d their	behavi	our at i	nanoso	cale.
CO3	Outlin	ie diffe	rent ch	aracte	rization	n techn	iques a	and too	ols used	d at the	nanos	scale.
CO4	Sumn	arize a	about s	synthes	and	fabrica	ation of	mater	rials at	nanosc	ale.	
CO5	Expla	in aboi	it appl	ication	s of sili	icon ca	rbide,	alumir	na, and	zirconi	a.	
CO6	Outlin	ie the a	applica	tions o	t nano	materia	als in v	arious	fields.	_		
Contri	butior	1 of Co	ourse	Outco	mes t	oward	s achi	ievem	ent of	Progra	am	
Outco	mes (1		v , 2- N	lediui	n, 3 –	High)	DO	DO	DO	DO	DO	DO
	PO 1	PO	PO	PO	PO	PO	PO	PO	PO	PO 10	PO	PO 10
001		2 1	3	4	5	6	1	8	9	10	11	12
COI	3	1	2						L			
CO2	3	2	1							1		
CO3	3	2	1									1
CO4	3	1	2								1	
CO5	3	1	2							1		
CO6	3	2	1									1
					τ	JNIT I						

INTRODUCTION: Basics of Quantum Mechanics, Band Structure in Solids, History, and Scope, Classification of Nanostructured Materials, Fascinating Nanostructures, Applications of Nanomaterials, Nature the best of nanotechnologist, Challenges, and Future Prospects, Carbon Nano Technology.

PROPERTIES OF MATERIALS:

Mechanical properties, electrical properties, dielectric properties, thermal properties, magnetic properties, optoelectronic properties. Effect of size reduction on properties, electronic structure of nanomaterials.

UNIT	Π
------	---

CHARACTERIZATION TECHNIQUES: X-Ray diffraction and Scherrer method, Small Angle X-ray scattering (SAXS), scanning electron microscopy, Scanning Tunneling Microscope (STM), scanning probe microscopy, transmission electron microscopy, atomic force microscopy, piezo response microscopy, X-ray photoelectron spectroscopy, XANES and XAFS, angle-resolved photoemission spectroscopy, diffuse reflectance spectra, photoluminescence spectra, Raman spectroscopy., Field Ion Microscope (FEM), Three-dimensional Atom Probe (3DAP), Nanoindentation.

UNIT III

SYNTHESIS AND FABRICATION: Synthesis of bulk polycrystalline samples, growth of single crystals. Synthesis techniques for nanoparticle preparation Bottom-Up Approach Physical Vapor Deposition, Inert Gas Condensation, Laser Ablation, Chemical Vapor Deposition, Molecular Beam Epitaxy, Sol-gel method, Self-assembly, hydrothermal growth, thin-film growth, Top-Down Approach Ball milling, microfabrication, lithography. Consolidation of Nano powders: Shock wave consolidation, Hot isostatic pressing, and Coldisostatic pressing Spark plasma sintering.

UNIT IV

SILICON CARBIDE: Application of Silicon carbide, Sintering of SiC, sintering of nanoparticles, nanoparticles of alumina and zirconia, wear materials and nanocomposites,

APPLICATIONS OF NANOMATERIALS: Nano-electronics, Micro and Nanoelectromechanical systems (MEMS/NEMS), Nano sensors, Nano catalysts, Food, and Agricultural Industries, Cosmetic and Consumer Goods, Structure and Engineering, Automotive Industry, Water Treatment, and the environment, Nano-medical applications, Nanobiology and a New Methodology in medical diagnostics, Nanomedicine Protocols for nano-drug Administration, Textiles, Paints, Energy, Defense and Space Applications, Nanotribology, Concerns, and challenges of Nanotechnology.

TEXTBOOKS:

1. Nanoscience and nanotechnology by M.S Ramachandra Rao, Shubra Singh, Wiley publishers.

2. Nano Materials- A.K.Bandyopadhyay/ New Age Publishers.

3. Nano Essentials- T.Pradeep/TMH

4.Textbook of Nano Science and Nano Technology – B.S. Murthy, P. Shankar, BaldevRaj, B.B. Rath, and James Munday, University Press-IIM.

REFERENCE BOOKS:

1. Introduction to Nanotechnology – Charles P. Poole, Jr., and Frank J. Owens, Wiley India Edition, 2012.

2. Nanomaterials, Nanotechnologies and Design by Michael F. Ashby, Paulo J. Ferreira and Daniel L. Schodek.

3. Carbon Nanotubes: Properties and Applications- Michael J. O'Connell

4. Electron Transport in Mesoscopic systems - S. Dutta, Cambridge University Press.

E-RESOURCES:

https://www.hsls.pitt.edu/e-journals/Nanotechnology https://www.nature.com/nnano/

Course Code: MECHANICAL VIBRATIONS (Professional Elective - IV)

				(Pro:	tessior	ial Ele	ctive –	1V)				
Lectur	re – Tu	itoria	l: 3-	0 Hou	rs			J	nterna	al Mari	ks:	40
Credit	s:		3					F	Extern	al Mar	ks:	60
Prerec	uisite	s:										
Fundar	nentals	s of En	gineeri	ng Mat	hemat	ics, En	gineeri	ng Meo	chanics	, Streng	gth of	
Materia	als											
Course	e Obje	ctives	5:									
1. '	Γo anal	yse sir	ngle DC	F Syst	ems							
2. '	fo analyse Damped Vibrations											
3. ′	Γo unde	erstan	d forced	d vibra	tions							
4. <i>′</i>	ГоAnaly	yse 2 I	OOF Sy	stems								
Course	e Outc	omes	:									
Upon a	succes	sful c	omple	etion o	of the	cours	e, the	stude	ent wil	1 be ab	le to:	:
CO1	Anal	yze sin	igle deg	gree fre	edom s	system	for its	natura	1 frequ	ency an	d vibr	ation
	respo	onse										
CO2	Anal	yze sin	igle deg	ree fre	edom s	system	for its	natura	1 frequ	ency an	d dan	nped
	vibration response											
CO3	Dete	Determine response of Single degree freedom systems under harmonic										
	excit	ations	-		-	-		-				
CO4	Under	standi	ing Vib	ration	measu	ring in	strume	nts				
CO5	Deterr	nine tl	he resp	onse o	f Two-c	legree f	freedon	n syste	ms und	ler free	and fo	orced
	vibrat	ions	1			0		5				
CO6	Under	stand	ing Dyr	namic v	vibratio	on abso	rber					
Contri	hution	of C	8 - J - 011#98	Outco	mes t	oward	s ach	ievem	ent of	Progr	am	
Outco	mes (1	-Lo	w. 2-N	/ediu	m.3 -	· High)				11051	u	
	PO	PO	PO	PO	PO	<u>8</u> , PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	1								2
000	0	0	0	1								2
CO2	3	3	3	1								2
CO3	3	3	3	1								2
CO4	3	3	3	1								2
CO5	3	3	3	1								2
CO6	3	3	3	1								2
					1	UNITI						

Undamped free vibrations of SDOF Systems: Introduction, basic concepts of vibration, importance of vibration study, elements of a vibrating system, types of vibration, methods of vibration analysis, harmonic motion, Equation of motion, free vibration of undamped translational system, free vibration of undamped torsional system, Raleigh's energy method.

Damped free vibrations of SDOF systems: Introduction, types of damping, free vibration with viscous and coulomb damping, logarithmic decrement.

UNIT II

Damped free vibrations of SDOF Systems: introduction, types of damping, free vibration with viscous and coulomb damping, logarithmic decrement.

Harmonically Exited Vibrations: Introduction, equations of motion, response of undamped and damped systems under harmonic excitation, response of a damped system under harmonic motion of the base, response of a damped system under rotating unbalance, vibration, measuring instruments-vibrometer and accelerometer, critical speed

UNIT III

Two Degree of Freedom Systems: Introduction, equations of motion for forced vibration, free vibration analysis of an undamped system, torsional system, coordinate coupling and principal coordinates, forced vibration analysis. Dynamic vibration absorber

UNIT IV

Numerical methods for multi DOF systems:

Maxwell's reciprocal theorem, influence coefficients, Rayleigh's method, Dunkerley's method, stodola method, orthogonality principle, method of matrix iteration and numerical.

TEXTBOOKS:

1. G. K. Grover, Mechanical Vibrations, 8/e, Nem Chand & Bros

REFERENCE BOOKS:

1. L. Meirovich, Elements of Vibration Analysis, 2/e. TataMcGrawHill, 2007.

2. J.S.Raoand

K.Gupta,IntroductoryCourseonTheoryandPracticeofMechanicalVibrations,2/e,New Age International,1999.

3. S.S.Rao, Mechanical Vibrations, 5/e, Pearson Education Inc., 2011.

E-RESOURCES:

https://nptel.ac.in/courses/112/103/112103112/ https://nptel.ac.in/courses/112/103/112103111/

18A4103522 INTRODUCTION TO COMPOSITE MATERIALS (Professional Elective – IV)

Lectur	e – Tu	torial	: 3-	3-0 Hours						Internal Marks:				
Credit	s:		3					F	Extern	al Mar	ks:	60		
Prereg	uisite	s:												
Engine	ering M	echani	ics, Me	chanic	s of Ma	aterials	•							
Course	e Obje	ctives	:											
1. \$	Studen	t will k	now th	e fund	amenta	al conc	epts of	compo	osites.					
2. \$	Studen	t will b	e able	to und	lerstan	d the	various	s types	of com	posites				
3. \$	Student	t will	be al	ble to	unde	rstand	the	fabrica	ation a	nd ma	anufac	turing		
1	echniq	ues of	compo	sites .										
4. \$	Student will understand the joining methods and theories of failures of													
(composites.													
5. \$	Studen	t will b	e in a j	positio	n to ap	ply the	e joinin	g tech	niques	and fail	lure th	leories		
(of comp	osites	-	-	_		-	_	_					
6. \$	Studen	t will b	e able 1	to test	the cha	aracter	istics o	of comp	osites					
Course	e Outc	omes	8											
Upon :	succes	sful c	omple	tion o	of the	cours	e, the	stude	ent wil	l be ab	le to:			
CO1	Identi	fy vario	ous typ	es of c	omposi	ites.	-							
CO2	Under	stand	the bas	sic con	cepts c	of reinfo	orceme	nts.						
CO3	Apply	the fal	oricatio	on and	manuf	acturir	ng tech	niques	of com	posites	•			
CO4	Under	rstand	the joiı	ning ar	nd theo	ries of	failure	s of co	mposite	es.				
CO5	Select	appro	priate j	joining	techni	ques o	f comp	osites.						
CO6	Identi	fy the o	charact	teristic	s of va	arious	compo	sites.						
Contri	butior	ı of Co	ourse	Outco	mes t	oward	l s ach i	ievem	ent of	Progra	am			
Outco	mes (1	– Lov	v, 2- N	/lediu	m, 3 –	High)	1	1						
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3					1					2			
CO2	2		3								1			
CO3		3	2		1									
CO4		2	3									1		
CO5	2	-	-	-	3						1			
CO6	2				3						1			
					τ	JNIT I								
Introd	Introduction: Classifications of Engineering Materials, Concept of composite													

Introduction: Classifications of Engineering Materials, Concept of composite materials, Matrix materials, Functions of a Matrix, Desired Properties of a Matrix, Polymer Matrix (Thermosets and Thermoplastics), Metal matrix, Ceramic matrix.

Types of Reinforcements/Fibers: Role and Selection or reinforcement materials, Types of fibres, Glass fibers, Carbon fibers, Aramid fibers, Metal fibers, Alumina fibers, Boron Fibers, Silicon carbide fibers, Quartz and Silica fibers, Multiphase fibers, Whiskers, Flakes etc.,

Mechanical properties of fibres. Material properties that can be improved by forming a composite material and its engineering potential

Various types of composites: Classification based on Matrix Material: Organic Matrix composites, Polymer matrix composites (PMC), Carbon matrix Composites or Carbon-Carbon Composites, Metal matrix composites (MMC), Ceramic matrix composites (CMC);

Classification based on reinforcements: Fibre Reinforced Composites, Fiber Reinforced Polymer (FRP) Composites, Laminar Composites, Particulate Composites, Comparison with Metals, Advantages & limitations of Composites

UNIT III

Fabrication methods: Processing of Composite Materials: Overall considerations, Autoclave curing, Other Manufacturing Processes like filament welding, compression molding, resin-transfer method, pultrusion, pre-peg layer, Fiber-only performs, Combined Fiber-Matrix performs

Manufacturing Techniques: Tooling and Specialty materials, Release agents, Peel plies, release films and fabrics, Bleeder and breather plies, bagging films

UNIT IV

Joining Methods and Failure Theories: Joining –Advantages and disadvantages of adhesive and mechanically fastened joints. Typical bond strengths

Testing of Composites: Mechanical testing of composites, tensile testing, Compressive testing, Intra-laminar shear testing, Inter-laminar shear testing, Fracture testing etc.

TEXTBOOKS:

- 1. Materials characterization, Vol. 10, ASM hand book
- 2. Mechanical Metallurgy by G. Dieter Mc-Graw Hill
- 3. Thermal Analysis of Materials by R.F. Speyer, Marcel Decker

4. Engineering Materials: Polymers, Ceramics and Composites A.K Bhargava Prentice Hall India.

REFERENCE BOOKS:

[1] Jones, R M, Mechanics of Composite Materials, Scripta Book Co.

[2] Agarwal, B D and Broutman, J. D, Analysis and Performance of Fiber Composites, New York, John Willey and Sons, 1990

[3] Mallik, P. K, Fiber reinforced composites : materials, manufacturing and design, New York- Marcel and Dekker, 1993 (2ndedition)

[4] Arthur, K Kaw, Mechanics of Composite Materials, CRC Press, 1997.

[5] Reddy J N, Mechanics of Laminated Composite Plates, CRC Press

[6] Mallik, P. K. Composite Engineering Hand Book, New York, Marcel and Dekker, Principles of Composite Material Mechanics,

[7] Author: Ronald Gibson An Introduction to Composite Materials, Authors: D. Hull and T.W. Clyne

E-RESOURCES:

https://www.intechopen.com/chapters/71222 https://nptel.ac.in/content/storage2/courses/105108124/ pdf/Lecture_Notes/LNm1.pdf

Course Code: REFRIGERATION & AIR CONDITIONING (Refrigeration and Psychometric tables and charts allowed) (Professional Elective – IV)

Lectur	re – Tu	itorial	l: 3-	1 Hou	rs]	Interna	al Mar	ks:	40
Credit	:s:		3					F	Extern	al Mar	ks:	60
Prerec	luisite	s:										
Thermo	odynam	nics										
Cours	e Obje	ctives	5:									
1. '	To prov	ide an	insight	t of fun	ldamer	ntals of	Refrige	eration	•			
2. '	To impa	art the	basic o	of Refri	gerant	s and d	lifferen	t types	of refr	igeratio	n syste	ems.
3. ′	To ena	able t	he stu	idents	of m	nethods	s to i	mprov	e perf	ormanc	e of	vapor
	compre	ssion s	systems	3.								
4. ′	To imb	ibe th	e know	vledge	of stea	am jet,	vapor	absor	rption,	thermo	electri	c and
	vortex t	ube sy	stems.									
5. <i>′</i>	To enal	ole the	studer	nts lear	rn basi	cs and	psych	ometri	c prope	rties ar	nd proo	cesses
1	used in	Air Co	onditior	ning sy	stems.						-	
6. ′	To imp	oart th	ie kno	wledge	of Ai	r Cono	ditionir	ıg sys	tems f	or hun	nan co	omfort
	conditio	ons.		U				0 5				
Cours	e Outc	omes	:									
Upon	succes	sful c	omple	tion o	of the	cours	e, the	stude	ent wil	l be ab	le to:	
CO1	Under	rstand	the bas	sic con	cepts o	of refrig	eration	n and t	heir ap	plicatio	ns.	
CO2	Identi	fy eco-	friendly	y refrig	erants	and us	se P-H	charts	to eval	uate th	e	
	perfor	mance	e of refr	igerati	onsyste	ems.						
CO3	Expla	in the	method	ls to in	nprove	perform	nance	of vapo	or comp	pression	n syste:	ms.
CO4	Analy	ze stea	m jet, v	vapor a	absorpt	tion, th	ermoel	ectric	and vor	tex tub	e syste	ems
CO5	Analy	ze air o	conditio	oning p	process	es usin	ıg prino	ciples o	of psych	nometry	7.	
CO6	Desig	n of Ai	r Condi	itioning	g syste	ms for	human	n comfe	ort cond	litions.		
Contri	ibutio	n of C	ourse	Outco	omes t	oward	ls achi	ievem	ent of	Progra	am	
Outco	mes (1	l – Lo v	w, 2- N	/lediu	m, 3 –	High)	1					
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	1				1					
CO2	3	2	1				1					
CO3	3	3	2				1					
CO4	3	3	2				1					
CO5	3	3	1				1					
CO6	3	2	2				3					
					τ	JNIT I						

FUNDAMENTALS OF REFRIGERATION: Introduction- Necessity and applications, unit of Refrigeration and C.O.P - Heat Engine, Refrigerator and Heat Pump-Types of Refrigeration systems and its Applications.

REFRIGERANTS: Classification of refrigerants- Desirable Properties-Nomenclature-Commonly used refrigerants- Alternate refrigerants –Greenhouse effect, global warming

AIR REFRIGERATION SYSTEM: Introduction-Air refrigeration system working on Reversed Carnot cycle – Air refrigeration system working on Bell Coleman cycle- COP-Open and Dense air systems, Applications.

UNIT II

VAPOUR COMPRESSION REFRIGERATION SYSTEM: Working principle-Simple vapour compression refrigeration cycle – COP- Representation of cycle on T-s and P-h charts- Effect of Sub cooling and Superheating --Actual Vapour compression cycle and its applications.

VCR SYSTEM COMPONENTS: Compressors-Classification-Working -Condensers – Classification-Working-Evaporators –Classification-Working, Expansion devices – Types-Working.

UNIT III

VAPOUR ABSORPTION REFRIGERATION SYSTEM: Description and working of Aqua-Ammonia system- Calculation of maximum COP- Lithium Bromide- Water system-Principle of Operation of three fluid absorption systems, Applications.

STEAM JET REFRIGERATION SYSTEM: Principle of working –Analysis- Applications. and operation of Thermo electric Refrigeration, Vortex tube refrigeration, Adiabatic demagnetization Refrigeration.

PSYCHOMETRY: Introduction- Psychometric properties and relations- Psychometric chart Psychometric Processes-Sensible, Latent and Total heat–Sensible Heat Factor and Bypass Factor.

UNIT IV

HUMAN COMFORT: Thermodynamics of Human Body-Effective temperature–Comfort chart.

AIR CONDITIONING SYSTEMS: Introduction-Components of Air conditioning system-Classification of Air conditioning systems-Central and Unitary systems- Comfort and Industrial air conditioning systems -Summer, Winter and Year-round systems- filters, grills and registers, fans and blowers.

DESIGN OF AIR CONDITION SYSTEMS: Summer air conditioning –ADP-System with Ventilated and re-circulated air with and without bypass factor- RSHF, GSHF and ESHF. Air conditioning Load Calculations.

TEXTBOOKS:

- 1. C. P. Arora. , Refrigeration and air conditioning TMH, 2nd Edition, 2000.
- 2. R. Dossat, Principles of Refrigeration - Pearson 4th Edition 2001
- 3. Refrigeration and Air conditioning / SC Arora &Domkundwar / Dhanpatrai

REFERENCE BOOKS:

1. S. C. Arora, Domkundwar, A course in refrigeration and air conditioning-Dhanapat Rai& sons 5th Edition ,1997.

Manohar Prasad, Refrigeration and Air conditioning, New Age international, 2003
 Basic Refrigeration and Air-Conditioning / Ananthanarayanan / TMH

E-RESOURCES:

https://researchguides.austincc.edu/c.php?g=434739&p=5832566 http://ecoursesonline.iasri.res.in/course/view.php?id=445

Course Code: JET AND ROCKET PROPULSION ENGINEERING (Professional Elective – IV)

Lectur	e – Tu	itorial	l: 3-	1 Hou	rs			J	Interna	al Mar	ks:	40
Credit	s:		3					F	Extern	al Mar	ks:	60
Prereg	uisite	s:										
Thermo	dynam	nics & I	IC Engi	ine and	l Gas T	`urbine	•					
Course	e Obje	ctives	:									
1. To p	provide	an ins	ight of	fundaı	mental	s and s	alient f	feature	es of Ga	s Turb	ine .	
2. To i	mpart	the bas	sic of je	t Prop	ulsion	and jet	engine	es.				
3. To e	enable (the stu	dents t	the con	cepts o	of Turb	o Propi	ulsion	and Tu	rbo jet.		
4. To i	mbibe	the kn	owledge	e of jet	Propu	lsion a	nd Roci	ket Pro	pulsior	n syster	n.	
5. To enable the students learn basics of Rocket engine.												
6. To i	6. To impart the knowledge of Rocket Technology for Rocket engine.											
Course	Course Outcomes:											
Upon s	succes	sful c	omple	etion o	of the	cours	e, the	stude	ent wil	l be at	ole to:	
CO1	Illusti	ate the	e thern	nodyna	mic as	pects o	f gas tı	arbine	S			
CO2	Analy	ze the	perform	nance	of jet e	ngines						
CO3	Comp	are dif	ferent a	aspects	s of the	ermal je	et engin	nes				
CO4	Sumn	narize	the wor	rking o	f rocke	t engin	es					
CO5	Apply	thrust	t mecha	anics to	o deter	mine fo	orces in	ı rocke	ts			
CO6	Contr	ast the	e aspec	ts of el	ectrica	l, nucle	ear and	plasm	na arc p	ropuls	ions	
Contri	butio	n of C	ourse	Outco	omes t	oward	ls achi	ievem	ent of	Progr	am	
Outco	mes (1	L – Lo v	w, 2- I	/lediu	m, 3 –	High)						
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2									
CO2		3	2				2					
CO3	2	2					3					
CO4	3	2	1				2					
CO5		3	2									
CO6	3	1	1				1					
					I	UNIT I						

Introduction to Jet Propulsion

Elements of Gas Turbine theory – Thermodynamic cycles, open closed and semi-closed – Parameters of performance – Refinements simple cycle.

Jet Propulsion

Historical sketch – Reaction Principle – Essential features of propulsion devices – Thermal Jet Engines, Classification of – Energy flow, thrust, thrust power and propulsion efficiency – Need for Thermal jet engines and applications.

UNIT II

Turbo Propulsion and Turbojets

Thermodynamic cycles, Plant layout, essential components, principles of operation – performance evaluation – thrust Augmentation and Thrust reversal – Contrasting with Piston Engine Propeller Plant. Ramjet – Thermodynamic Cycle, Plant layout, essential components – Principle of operation – Performance evaluation- Comparison among atmospheric thermal jet engines – Square jet and Pulse jet, Elementary treatment of jet, Applications of Turbojets

UNIT III

Rocket Engines

Need - applications – Basic principle of operation and parameters of performance – Classification, solid and liquid propellant rocket engines, advantages, domains of application – Propellants – Comparison of propulsion systems.

UNIT IV

Rocket Technology

Flight mechanics, application Thrust Profiles, Acceleration – stating of Rockets, need for Feed systems, injectors and expansion nozzles – Rocket heat transfer and ablative cooling- Testing & Instrumentation – Advances Propulsion Systems, Elementary treatment of Electrical, Nuclear and Plasma Arc Propulsion.

TEXTBOOKS:

1. Gill Smith and Zierys, Fundamentals of I.C Engines, Revised Edition, Oxford & Ibh Publishing Co.Calcutta, 3rd Edition, 2007

2. Sutton, Rocket Propulsion, John Wiley & Sons, 8th Edition, 2010

3. Cohen, Rogers and Saravana Muto Gas Turbines, Prentice Hall, 6th Edition, 2008

4. V Ganesan, Gas Turbines, Tata McGraw-Hill Education, 3rd Education, 2010

REFERENCE BOOKS:

1. Hill and Paterson, Thermodynamics of Propulsion, Prentice Hall, 2nd Edition, 1991 **E-RESOURCES:**

https://www.sciencedirect.com/topics/engineering/jet-propulsion

https://nptel.ac.in/courses/101/104/101104019/

Lab code	
ICS metrology ICS metrology la	ab

Practice:	3	Internal Marks:	40
Credits:	1.5	External Marks:	60

Prerequisites: Machine Design, Engineering Physics

Course Objectives:

Course Objectives: The student can learn

1. Calibration of pressure gauge, temperature measuring instruments

2.Calibration of displacement, speed measuring instruments

3. Calibration of vibration measuring instruments

4. Measuring and gauging instruments for inspection of precision linear,

geometric forms, angular and surface finish measurements.

5. The machine tool alignment test on lathe, milling and drilling machines

6.Operating tool maker's microscope and surface roughness measuring instrument.

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

- CO1 Explain the calibration of pressure gauge, temperature measuring instruments
- CO2 Demonstrate the calibration of displacement, speed measuring instruments
- CO3 Explain the calibration of vibration measuring instruments
- CO4 Explain the working of various instruments like vernier calipers, bevel protractor ,micrometers and dial indicators
- CO5 Familiarize the working of tool maker's microscope and surface roughness measuring instruments.
- CO6 Demonstrate the Machine tool alignment test on the lathe, drilling and milling machines

Contribution of Course Outcomes towards achievement of Program

Outcomes

(1 - Low, 2- Medium, 3 - High)

	ΡΟ	ΡΟ	PO	PO	PO	ΡΟ						
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1							1		
CO2	3	3	2									

CO3	3	1	3					
CO4	2	3	2				1	
CO5	1	3	2				1	
CO6	2	3	2				1	

List of Experiments: INSTRUMENTATION LAB

1. Calibration of pressure gauge.

2. Calibration of transducer for temperature, thermocouple and resistance temperature detector measurement.

3. Study and calibration of LVDT transducer for displacement measurement.

4. Calibration of strain gauge.

5. Calibration of capacitive transducer.

6. Study and calibration of photo and magnetic speed pickups.

7. Study and calibration of a rotameter.

8. Study and use of a seismic pickup for the measurement of vibration amplitude of an engine bed at various loads.

9. Study and calibration of Mcleod gauge for low pressure.

METROLOGY LAB

1. Measurement of bore by internal micrometres and dial bore indicator / rollers and slip gauges.

2. Use of gear teeth vernier calipers for checking the chordal addendum and chordal thickness of spur gear.

3. Alignment test on the lathe/milling machine using dial indicators.

4. Measurement of linear and angular dimensions using Tool makers microscope.

5. Angle and taper measurements by Bevel protractor, Sine bars, spirit level etc.

6. Measurement of effective diameter of a thread using Two wire/ Three wire method.

7. Surface roughness measurement by Talysurf instrument.

EQUIPMENT REQUIRED:

pressure gauge, Thermocouple, LVDT transducer ,Rotameter, Mcleod gauge, Strain gauge, Micrometres, Slip gauges, Gear teeth vernier calipers, Lathe/Milling machine, Bevel protractor, Sine bars, Spirit level, Talysurf instrument.

REFERENCE BOOKS:

1. Engineering Metrology by KL Narayana, Scitech publishers.

2. Engineering Metrology and Measurements by NV Raghavendra, LKrishna Murthy, Oxford publishers

3. Precision Engineering in Manufacturing by R.L. Murthy / New Age.

E-RESOURCES:

https://www.npl.co.uk/resources

https://iopscience.iop.org/journal/0957-0233

Lab code-COMPUTATIONAL FLUID DYNAMICS LABORATORY

Practice:	3	Internal Marks:	40
Credits:	1.5	External Marks:	60

Prerequisites:

Basic courses of Fluid Mechanics, Heat transfer and Numerical methods are required as prerequisites

Knowledge of matrices, differentiation, integration and differential equations is expected

Course Objectives:

- 1. Solving Problems of fluid mechanics and heat transfer by writing programs in MATLAB.
- 2. Using ANSYS-FLUENT build a geometry, mesh that geometry, Perform CFD method on the mesh, perform the calculation and post-process the results.
- 3. Understanding the validation of the numerical result by comparison with known analytical results.
- 4. Understanding the numerical result by invoking the physical principles of fluid mechanics and heat transfer
- 5. Illustrate the working concepts of thermal engineering
- 6. Solve mechanical engineering problems

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

001							
COI	Identify, model, analyze and solve mechanical engineering problems						
CO2	Understand basic knowledge of computational methods in Fluid flow						
	applications.						
CO3	Alalyze Initial Boundary value problems and determine various						
	quantities of interest.						
CO4	Use modern modeling and simulation tools and techniques						
CO5	Develop practical solutions for mechanical engineering problems under						
000	professional and ethical constraints						
CO6	Design and conduct laboratory experiments for thermal, fluids and						
	mechanical systems						
Cont	ribution of Course Outcomes towards achievement of Program						
Outc	omes						

(1 – Low, 2- Medium, 3 – High)														
	PO 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12		
CO1		3	1	2	3	1	2					1		
CO2	2		2		2		2					2		
CO3	2	1		1		2						2		
CO4	2	1	2	2	1	2	2					2		
CO5	2	3	3	2	3	3	2					3		
CO6	3	3	3	3	3	3	3					3		

List of Experiments:

PART-A

Writing Programs in MATLAB for the following

- 1. Solution of Transcendental equations
- 2. Solution of Simultaneous algebraic equations
- 3. Numerical differentiation and Integration
- 4. Solution of Ordinary Differential Equation
- 5. Solution of a Tri-diagonal matrix using Thomas Algorithm.
- 6. Solution of Partial differential equations related to
 - i) Elliptical Partial differential equations
 - ii) Parabolic Partial differential equations
 - iii) Hyperbolic Partial differential equations
- 7. Solution of 1-D and 2-D heat conduction with (Finite Difference method)
 - i) Constant temperature boundary conditions
 - ii) Constant heat flux boundary conditions
 - iii) Convective boundary conditions

8. Solution of Incompressible Navier-Stokes equations (Finite difference and Finite Volume methods)

9. Solution of Inviscid incompressible fluid flows. (Finite difference and Finite Volume methods)

PART-B

Using ANSYS-FLUENT solve the following heat transfer analysis problems 1. steady state conduction

2. Lumped heat transfer

3. Convective heat transfer – Internal flow (study both velocity and thermal boundary layers)

4. Convective heat transfer – External flow (study both velocity and thermal boundary layers)

5. Radiation heat transfer- Emissivity

EQUIPMENT REQUIRED:

SOFTWARE REQUIRED

- 1. MATLAB R2009b and above.
- 2. Windows 7 and above.
- 3. Ansys 14 and above

REFERENCE BOOKS:

- 1. Computational Fluid Dynamics by Anderson JD
- 2. Introduction to Computational Fluid Dynamics by Atul Sharma

E-RESOURCES:

https://onlinecourses.nptel.ac.in/noc22_me02/preview

https://books.google.co.in/books/about/An_Introduction_to_Computational_Fl uid_D.html?id=RvBZ-UMpGzIC

Course Code: NANOTECHNOLOGY (Professional Elective - V)

Lectur	re – Tu	torial	: 3-	3-0 Hours					Internal Marks:					
Credit	s:		3					E	xtern	al Mar	ks:	60		
Prereg	luisite	s:												
Physics	s, Chem	nistry, I	Biology	, and I	Mather	natics								
Course	Course Objectives:													
1. Students will know about band structure, history, and applications of														
1	nanotechnology.													
2. 3	2. Students will know about the properties of different materials and their													
1	behaviour at nanoscale.													
3. 3	3. Students will know about characterization techniques and tools used at the													
1	nanoscale.													
4. \$	Students will know about the synthesis and fabrication of materials at													
1	nanoscale.													
5. 5	Studen	ts will l	know a	about a	pplicat	ions of	silicor	ı carbio	le, alur	nina, a	nd zirc	onia.		
6. 5	Studen	ts will l	know a	about tl	he app	lication	is of na	anomat	erials i	n vario	us field	ls.		
Course	e Outc	omes	:											
Upon a	succes	sful c	omple	etion o	of the	cours	e, the	stude	nt wil	l be ab	ole to:			
CO1	Expla	in solic	ls and	their b	and st	ructure	e and a	pplicat	ions of	nanote	echnolo	ogy.		
CO2	Demo	nstrate	e about	t prope	rties of	fmater	ials an	d their	behavi	our at i	nanoso	cale.		
CO3	Outlin	ne diffe	rent cł	naracte	rizatio	n techn	iques a	and too	ols used	l at the	nanos	scale.		
CO4	Sumn	narize a	about s	synthes	sis and	fabrica	ation of	f mater	ials at	nanosc	ale.			
CO5	Expla	in aboı	ıt appl	ication	s of sil	icon ca	rbide,	alumir	a, and	zirconi	a.			
CO6	Outlin	ne the a	applica	tions o	f nano	materia	als in v	rarious	fields.					
Contri	ibutior	ı of Co	ourse	Outco	omes t	oward	s ach	ievem	ent of	Progra	am			
Outco	mes (1	– Lov	v, 2- I	Aediuı	m, 3 –	High)	_		_		_			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		
001	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3	1	2						1					
CO2	3	2	1							1				
CO3	3	2	1									1		
CO4	3	1	2								1			
CO5	3	1	2							1				
CO6	3	2	1									1		
					τ	JNIT I								

INTRODUCTION: Basics of Quantum Mechanics, Band Structure in Solids, History, and Scope, Classification of Nanostructured Materials, Fascinating Nanostructures, Applications of Nanomaterials, Nature the best of nanotechnologist, Challenges, and Future Prospects, Carbon Nano Technology.

PROPERTIES OF MATERIALS:

Mechanical properties, electrical properties, dielectric properties, thermal properties, magnetic properties, optoelectronic properties. Effect of size reduction on properties, electronic structure of nanomaterials.

CHARACTERIZATION TECHNIQUES: X-Ray diffraction and Scherrer method, Small Angle X-ray scattering (SAXS), scanning electron microscopy, Scanning Tunneling Microscope (STM), scanning probe microscopy, transmission electron microscopy, atomic force microscopy, piezo response microscopy, X-ray photoelectron spectroscopy, XANES and XAFS, angle-resolved photoemission spectroscopy, diffuse reflectance spectra, photoluminescence spectra, Raman spectroscopy., Field Ion Microscope (FEM), Three-dimensional Atom Probe (3DAP), Nanoindentation.

UNIT III

SYNTHESIS AND FABRICATION: Synthesis of bulk polycrystalline samples, growth of single crystals. Synthesis techniques for nanoparticle preparation Bottom-Up Approach Physical Vapor Deposition, Inert Gas Condensation, Laser Ablation, Chemical Vapor Deposition, Molecular Beam Epitaxy, Sol-gel method, Self-assembly, hvdrothermal growth, thin-film growth, Top-Down Approach Ball milling, microfabrication, lithography. Consolidation of Nano powders: Shock wave consolidation, Hot isostatic pressing, and Coldisostatic pressing Spark plasma sintering.

UNIT IV

SILICON CARBIDE: Application of Silicon carbide, Sintering of SiC, sintering of nanoparticles, nanoparticles of alumina and zirconia, wear materials and nanocomposites,

APPLICATIONS OF NANOMATERIALS: Nano-electronics, Micro and Nanoelectromechanical systems (MEMS/NEMS), Nano sensors, Nano catalysts, Food, and Agricultural Industries, Cosmetic and Consumer Goods, Structure and Engineering, Automotive Industry, Water Treatment, and the environment, Nano-medical applications, Nanobiology and a New Methodology in medical diagnostics, Nanomedicine Protocols for nano-drug Administration, Textiles, Paints, Energy, Defense and Space Applications, Nanotribology, Concerns, and challenges of Nanotechnology.

TEXTBOOKS:

1. Nanoscience and nanotechnology by M.S Ramachandra Rao, Shubra Singh, Wiley publishers.

2. Nano Materials- A.K.Bandyopadhyay/ New Age Publishers.

3. Nano Essentials- T.Pradeep/TMH

4.Textbook of Nano Science and Nano Technology – B.S. Murthy, P. Shankar, BaldevRaj, B.B. Rath, and James Munday, University Press-IIM.

REFERENCE BOOKS:

1. Introduction to Nanotechnology – Charles P. Poole, Jr., and Frank J. Owens, Wiley India Edition, 2012.

2. Nanomaterials, Nanotechnologies and Design by Michael F. Ashby, Paulo J. Ferreira and Daniel L. Schodek.

3. Carbon Nanotubes: Properties and Applications- Michael J. O'Connell

4. Electron Transport in Mesoscopic systems - S. Dutta, Cambridge University Press.

E-RESOURCES:

https://www.hsls.pitt.edu/e-journals/Nanotechnology https://www.nature.com/nnano/

selection and design.

Course code-INTRODUCTION TO ROBOTICS (Professional Elective – V)

Lectur	re – Tu	ıtorial	: 2-	-1 Hours					Interna	ks:	40			
Credit	S:		3					Ľ	xtern	ai mar	KS:	60		
Fundar	uisite	S:	rinoori	ng Mot	hemoti	ion Fr	rineeri	na Mea	honios					
Fundal			gineen	iig mai	memau	ics, En	gineen	ing mee	mannes					
Course				1		-1		· ·	4	4 : 4 .	- 1 1			
2. Student will be exposed to the various types of end effectors														
2. Student will be exposed to the various types of end effectors. 3. Student will apply the basic mathematics to calculate kinematic forces in robot														
3. Student will apply the basic mathematics to calculate kinematic forces in robot manipulator.														
1	manıpu	ilator.	_		_									
4. \$	4. Student will understand the robot controlling and programming methods.													
5. \$	5. Student will be in a position to describe various actuators, sensors.													
6. Student will be aware of the various industrial applications of robots.														
Course Outcomes:														
Upon :	succes	ssful c	omple	etion o	of the	cours	e, the	stude	ent wil	l be at	ole to:	1		
CO1	Identi	fy vario	ous rot	oot con	figurat	ions.								
CO2	Under	rstand	the ba	sic con	nponen	ts of ro	bots.							
CO3	Evalu	ate D-I	H notat	tions fo	or simp	le robo	t mani	pulato	r.					
CO4	CO4 Perform trajectory planning for a manipulator by avoiding obstacles.													
CO5 Select appropriate actuators and sensors for a robot.														
CO6 Illustrate the industrial applications of robots.														
Contri	butio	n of C	ourse	Outco	omes t	oward	ls ach	ievem	ent of	Progr	am			
Outco	mes (1	l – Lov	w, 2- I	/lediu	m, 3 –	High)			_	_	_			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3					1					2			
CO2	2		3								1			
CO3		3	2		1									
CO4		2	3									1		
CO5	2	-	-	-	3						1			
CO6	2				3						1			
					τ	JNIT I								
Introd	uction	Auton	nation	and ro	botics,	Robot	anator	ny, roł	oot mot	ions, Jo	oint no	otation		
scheme	es, worl	k volur	ne, spe	ed of 1	notions	s, load	carryii	ng cap	acity, S	peed of	f respo	onse &		
stability, Precision of movement- Spatial resolution, accuracy, repeatability,														
compliance. Classification of robots by coordinate system and control system.														
Compo	nents	of the	e Indu	strial	Robot	ics: Fi	inction	line	diagran	n repre	esentat	ion of		
robot c	ompon	ents, r	number	of deg	grees o	f freed	om, Ty	pes of	end ef	fectors	, Mech	anical		
grippers, gripper mechanisms, other types of grippers, Considerations in gripper														

UNIT II

Motion Analysis: Transformation matrices- Translation, Rotation, Combined translation and rotation, Homogeneous transformation matrix - Problems.

Manipulator Kinematics: Description of Link and Joint parameters, Kinematic modelling of the manipulator, D-H Notation, Kinematic relationship between adjacent links, Forward and Inverse kinematics. Differential kinematics

UNIT III

Trajectory Planning: Terminology, Steps in trajectory planning, Slew motion, joint integrated motion, straight line motion, circular motion, Joint space technique, Cartesian space technique, cubic polynomial with and without via points.

Robot Programming and Languages: Lead through programming, robot program as a path in space, WAIT, SIGNAL, DELAY commands, Branching, capabilities and limitations. Textual robot languages, generations, Language structure, Elements and functions.

Dynamics: Differential transformation and manipulators, Jacobians – problems Dynamics: Lagrange – Euler and Newton – Euler formulations – Problems.

UNIT IV

Robotic Actuators and Sensors: Pneumatic, Hydraulic actuators, electric & stepper motors, Internal & external sensors, Position, Velocity sensors, Tactile, Proximity and Range sensors.

Robot Applications in Manufacturing: Material Transfer - Material handling, loading and unloading- Processing - spot and continuous arc welding & spray painting - Assembly and Inspection

TEXTBOOKS:

- Mikell P. Groover and Mitchell Weiss, Roger N. Nagel, NicholasG.Odrey, Industrial Robotics — Mc Graw Hill, 1986.
- 2. R K Mittal and I J Nagrath, Robotics and control, Illustrated Edition, Tata McGraw Hill India 2003.

REFERENCE BOOKS:

- Saeed B. Niku, Introduction to Robotics Analysis, System, Applications, 2nd Edition, John Wiley & Sons, 2010.
- 2. H. Asada and J.J.E. Slotine, Robot Analysis and Control, 1st Edition Wiley-Interscience, 1986.
- 3. Robert J. Schillin, Fundamentals of Robotics: Analysis and control, Prentice-Hall Of India Pvt. Limited, 1996.
- 4. Mohsen shahinpoor, A robot Engineering textbook, Harper & Row Publishers, 1987.
- 5. John.J.Craig Addison, Introduction to Robotics: Mechanics and Control, Wesley, 1999.
- 6. K.S. FU, R.C. Gonzalez and C.S.G Lee, Robotics: Control, sensing, vision, and intelligence. Mc Graw Hill, 1987.
- 7. Richard D. Klafter, Thomas Robotic Engineering an integrated approach, PHI publications 1988.

E-RESOURCES:

https://ocw.mit.edu/courses/mechanical-engineering/2-12-introduction-torobotics-fall-2005/

https://onlinecourses.nptel.ac.in/noc21_de13/preview

Course Code: ENERGY CONSERVATION AND MANAGEMENT (Professional Elective – V)

Lectur	re – Tu	ıtorial	: 3-	0 Hou	rs			Ι	nterna	al Mar	ks:	40		
Credit	s:		3					E	xtern	al Mar	ks:	60		
Prereg	uisite	s:												
Enviro	nment	Studies	s, Elem	ents of	f Mech	anical	Engine	ering, 1	ſhermo	dynam	ics			
Course	e Obje	ctives	:											
1. 3	Studen	t will	under	rstand	about	t Ener	gy coi	nservat	ion ar	nd role	e of E	Energy		
]	Manage	ement.												
2. 3	2. Student will understand about Energy conservation in Electrical systems.													
3. 3	3. Student will understand about Energy conservation in Thermal systems.													
4. 3	Studen	t will	under	rstand	bout	Princi	ples o	f Ener	rgy Ma	inagem	ent, I	Energy		
(demand estimation and applications of life cycle costing analysis.													
Course	e Outc	omes	:											
Upon a	succes	ssful c	omple	etion o	of the	cours	e, the	stude	nt wil	l be at	ole to:			
CO1	Stude	ent sho	uld be	able to	know	basics	of Ene	rgy cor	iservati	ion and	1			
000	Envir	onmen	tal Asp	ects As	ssociat	ed With	n Energ	gy Utili	zation					
CO2	Student should be able to know basics of Energy Management.													
03	Students should be able to Evaluate the energy saving & conservation in different Energy conservation in Electrical systems													
CO4	Stude	ents she	ould be	e able t	o Eval	uate th	e energ	zv savii	ng & co	nserva	tion in			
•••	differe	ent Ene	ergy co	nserva	tion in	Therm	al syst	ems.	8					
CO5	Stude	ents she	ould be	e able t	o prep	are En	ergy de	mand	estimat	tion, Or	ganizi	ng		
	and M	lanagir	ng Ene	rgy Ma	nagem	ent Pro	ograms	•						
CO6	Stude	ents she	ould be	e able t	o Ecor	nomic A	spects	Calcul	lation o	f simpl	e payb	ack		
() a m t m	metho	od and	Applic	ations	of life of		osting a	analysis	S	D				
Outco	DUTIOI		ourse	Jediu	mes t	Use High	is ach	ievem	ent oi	Progr	am			
outeo	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3			1		1					2			
CO2	2		3					1			1			
CO3		3	2		1					1				
CO4		2	3	3			1					1		
CO5	3			2				1			1			
CO6	2			3						1				
					I	UNIT I								
Introd	uction	Energ	gy – Po	wer –	Past 8	& Prese	nt Sce	nario (Of Worl	ld; Nat	ional E	Energy		

Introduction: Energy – Power – Past & Present Scenario Of World; National Energy Consumption Data – Environmental Aspects Associated With Energy Utilization – Energy Auditing: Need, Types, Methodology And Barriers. Role Of Energy Managers. Instruments For Energy Auditing.Basic Principles of Energy Audit and management Energy audit – Definitions – Concept – Types of audit – Energy index – Cost index – Pie charts – Sankey diagrams – Load profiles – Energy conservation schemes and energy saving potential.

UNIT II

Electrical Systems: Lighting Modification of existing systems – Replacement of existing systems – Luminous efficiency-Luminance or brightness – Types of lamps – Types of lighting – Electric lighting fittings-Electric Motors – Motor Efficiency Computation, Energy Efficient Motors, Energy conservation measures.

UNIT III

Thermal Systems: Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters, Space Heating and Ventilation – Air–Conditioning (HVAC) and Water Heating – Efficiency Computation and Encon Measures. Steam: Distribution & Usage: Steam Traps, Condensate Recovery, Flash Steam Utilization, Insulators & Refractories.

UNIT IV

Energy Management: Principles of Energy Management, Energy demand estimation, Organizing and Managing Energy Management Programs, Energy pricing.Computation of Economic Aspects Calculation of simple payback method – Net present worth method – Power factor correction –Applications of life cycle costing analysis – Return on investment.

TEXTBOOKS:

- 1. Energy management by W.R. Murphy & G. Mckay Butter worth, Elsevier publications. 2012
- 2. Energy efficient electric motors by John .C. Andreas, Marcel Dekker Inc Ltd–2nd edition, 1995.

REFERENCE BOOKS:

- 1. Electric Energy Utilization and Conservation by S C Tripathy, Tata McGraw hill publishing company Ltd. New Delhi.
- 2. Energy management by Paul o' Callaghan, Mc-Graw Hill Book company-1st edition, 1998.
- 3. Energy management hand book by W.C.Turner, John wiley and sons.
- 4. Energy management and conservation by v Sharma and p venkataseshaiah International Publishing House pvt.ltd,2011.

E-RESOURCES:

https://www.electricalindia.in/energy-management-and-conservation/

https://www.springer.com/journal/12053

Course Code: COMPUTER GRAPHICS AND GEOMETRICAL MODELING (Professional Elective – V)

Lectu	ture – Tutorial: 3-0 Hours Internal Marks: 40													
Credit	s:		3					F	Extern	al Mar	ks:	60		
Prerec	luisite	s:												
Engine	ering D	rawing	g, Engii	neering	g mathe	ematic	s, CAD							
Course Objectives:														
1. Student will understand about Energy conservation and role of Energy														
	Management.													
2.	2. Student will understand about Energy conservation in Electrical systems.													
3. Student will understand about Energy conservation in Thermal systems.														
4. Student will understand bout Principles of Energy Management, Energy														
demand estimation and applications of life cycle costing analysis.														
Cours	e Outc	omes												
Upon	succes	sful c	omple	etion o	of the	cours	e, the	stude	ent wil	l be ab	le to:			
CO1	Stude	nt sh	ould 1	be abl	le to	know	basics	s of l	Energy	conse	rvatior	n and		
	Envir	onmen	tal Asp	ects As	ssociat	ed with	n Energ	y Utili	zation					
CO2	CO2 Student should be able to know basics of Energy Management.													
CO3	3 Students should be able to Evaluate the energy saving & conservation in													
004	alliere	ent Ene	ergy co	nserva	tion in	Electri	ical sys	tems.	aarina	9- 00m	aamtat	ion in		
C04	differe	nt Ene		nserva	tion in	Therm	al syst	ems	saving	& con	servat			
CO5	Stude	nts sh	ould h	e able	to pre	epare	Energy	dema	nd esti	mation	. Orga	nizing		
000	and M	lanagii	ng Ene	rgy Ma	nagem	ent Pro	ograms				, 0180	8		
CO6	Stude	nts sh	ould b	e able	to Eco	nomic	Aspect	ts Calc	ulation	of sim	ple pa	yback		
	metho	od and	Applic	ations	of life o	cycle co	osting a	analysi	S					
Contri	ibutio1	1 of C	ourse	Outco	omes t	oward	ls ach	ievem	ent of	Progr	am			
Outco	mes (J	-Lot	N, 2- I PO		m, 3 –	High		ΡO	PO	ΡO	DO	PO		
	FU 1	PU 2	РО 2	РО 4	F0 5	FU 6	FU 7	PU	PU Q	FO 10	FU 11	FU 12		
CO1	1	4	3		3	1	-	0	2	10	11	14		
001	3			L		1					2			
CO2	2		3					1			1			
CO3		3	2		1					1				
CO4		2	3	3			1					1		
CO5	3			2				1			1			
CO6	CO6 2 3 1													
					τ	JNIT I								

CAD Tools: Definition of CAD Tools, Graphics standards, Graphics software: requirements of graphics software, Functional areas of CAD, Efficient use of CAD software. Basics of Geometric Modelling: Requirement of geometric modelling, Geometric models, Geometric construction methods, Modelling facilities desired.

UNIT II

Geometric modelling: Classification of wireframe entities, Curve representation methods, Parametric representation of analytic curves: line, circle, arc, conics, Parametric representation of synthetic curves: Hermite cubic curve, Bezier curve, B-Spline curve, NURBS, Curve manipulations.

UNIT III

Solid Modelling: Geometry and topology, Boundary representation, The Euler-Poincare formula, Euler operators, Constructive solid geometry: CSG primitives, Boolean operators, CSG expressions, Interior, Exterior, closure, Sweeping: linear and non-linear, Solid manipulations

UNIT IV

Transformations: 2-D and 3-D transformations: translation, scaling, rotation, reflection, concatenation, homogeneous coordinates, Perspective projection, orthotropic projection, isometric projection, Hidden surface removal, shading, rendering. CAD/ CAM Data Exchange: Evaluation of data exchange format, Data exchange formats: IGES, PDES, CGM, STEP Dimensioning and tolerances: Linear, angular, angular dimensions, maximum material condition (MMC), Least material condition (LMC), Regardless of feature size (RFS).

TEXTBOOKS:

- 1. CAD/CAM Concepts and Applications/ Alavala/ PHI.
- 2. Mastering CAD/CAM / Ibrhim Zeid / Mc Graw Hill International.
- 3. CAD/CAM Principles and Applications/ P.N.Rao/TMH/3rd Edition
- 4. CAD/CAM /Groover M.P./ Pearson education

REFERENCE BOOKS:

- 1. CAD / CAM / CIM, Radhakrishnan and Subramanian/ New Age
- 2. Principles of Computer Aided Design and Manufacturing/ Farid Amirouche/ Pearson
- 3. Computer Numerical Control Concepts and programming/ Warren S Seames/ Thomson.

E-RESOURCES:

https://www.cs.princeton.edu/courses/archive/spr00/cs598b/

Course Code: DESIGN FOR MANUFACTURING (Professional Elective-VI)

Lectur	e – Tu	torial	: 3-	0 Hou	rs			Ι	nterna	al Mari	ks:	40		
Credit	s:		3					E	Extern	al Mar	ks:	60		
Prereg	uisite	s:												
Manufacturing Process, Engineering Materials, Design of Machine Elements- I, II														
Course	e Obje	ctives	:											
1. \$	1. Student will know the the basic concept of DFMA for economical production													
2. \$. Student will be exposed to the proper materials for design considerations.													
3. \$	3. Student will apply understand the field of metal casting.													
4. Student will understand the machining and forming considerations in Design														
f	for Manufacturing													
5. \$	5. Student will be in a position of joining and integrate the knowledge of													
(compliance analysis													
6. \$	6. Student will be aware of design considerations in interference analysis for													
6	assemb	ly												
Course	e Outc	omes:												
Upon s	succes	sful c	omple	tion o	of the	cours	e, the	stude	nt wil	1 be ab	le to:			
CO1	Under	stand	the bas	sic con	cept of	DFMA	for eco	onomic	al prod	luction				
CO2	Identi	fy and	select	the pro	oper ma	aterials	•							
CO3	Apply	the kn	owledg	ge in th	e field	of meta	al casti	ng.						
CO4	Select	the ma	achinir	ng and	formin	ng cons	ideratio	ons in	Design	for Ma	nufact	uring.		
CO5	Apply compl	the d iance a	esign analysi	conside s	eration	is in jo	oining	and ir	ntegrate	e the k	nowlee	dge of		
CO6	Apply	the de	sign co	nsider	ations	in inte	rferenc	e analy	ysis for	assem	bly.			
Contri	butior	of Co	ourse	Outco	mes t	oward	ls achi	ievem	ent of	Progr	am			
Outco	mes (1	– Lov	v, 2- I	/lediu1	m, 3 –	High)	1	1						
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3					1					2			
CO2	2		3								1			
CO3		3	2		1									
CO4		2	3									1		
CO5	2	-	-	-	3						1			
CO6	2				3						1			
					τ	UNIT I								

Introduction to DFMA: History of DFMA, Steps for applying DFMA during product design, Advantages of applying DFMA during product design, Reasons for not implementing DFMA,

Introduction to Manufacturing Process: Classification of manufacturing process, Basic manufacturing processes, Mechanical properties of material: Tensile properties, engineering stress-strain, True stress strain, Compression properties, Shear properties Introduction to materials and material selection: Classification of engineering materials, Material selection for product design.

UNIT II

DFM methodology for Sand casting: Typical characteristics of sand cast part, Design Recommendation for sand casting, Die casting: Suitable material consideration, General design consideration, Specific design Recommendation. Powder metal processing: Typical characteristics, Design recommendations

UNIT III

DFM methodology for Machining: Recommended materials for machinability, Design Recommendations, Turning operation: Suitable materials, Design Recommendations,

DFM methodology for Forging: Forging processes, Forging nomenclature, Suitable materials for forging, Design Recommendations, Extrusion: Process, Suitable material for extrusion, Design Recommendation for metal extrusion. Rolled Section: Process, Design Recommendations of rolled section,

UNIT IV

DFM methodology for Welding: Review of welding Processes, design recommendation for welding process, Solder and brazed assembly: Process, Typical characteristics, Suitable materials, Design detail recommendations, adhesively bonded assemblies: Typical characteristics, Suitable materials, Design Recommendations for adhesive joint Assembly: Compliance analysis and interference analysis for the design of assembly – design and development of features for automatic assembly –liaison diagrams. Environment: Motivations for environment, principles of environment-eco-efficiency, product life cycle perspective, environment tools and processes, environment design guidelines.

TEXTBOOKS:

- 1. L. C. Schmidt, G. Dieter, Engineering Design, 4thedition, McGraw Hill Education India Private Limited.
- 2. James G. Bralla, Hand Book of Product Design for Manufacturing, McGraw Hill Co., 2nd edition1986.

3. Robert Matousek., Engineering Design - A Systematic Approach, Blackie & Sons Ltd, 1963.

4. P.Dewhurst, W.Knight, G.Boothroyd, Product Design for Manufacture and Assembly, CRC Press.

REFERENCE BOOKS:

1. A K Chitale and R C Gupta, "Product Design and Manufacturing", PHI, New Delhi, 2. J. Lesko, Industrial Design, Materials and Manufacture Guide, John Willy and Sons, Inc

3. O. Molloy, S. Tilley and E.A. Warman Design for Manufacturing and assembly, Chapman &Hall, London, UK.

4. D. E. Whitney, Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development, Oxford University Press, New York

E-RESOURCES:

https://news.ewmfg.com/blog/manufacturing/dfm-design-for-manufacturing https://www.plm.automation.siemens.com/global/en/our-story/glossary/designfor-manufacturing-and-assembly-dfma/53982

Course Code: AUTOMOBILE ENGINEERING (Professional Elective-VI)

Lectur	ure – Tutorial: 3-0 Hours Internal Marks: 40													
Credit	s:		3					E	xtern	al Mar	ks:	60		
Prereg	uisite	s:												
Thermo	Thermodynamics, Machine Design, Metallurgy													
Course	e Obje	ctives	5:											
1. \$	Studen	ts will	know a	bout t	he basi	ic layoı	it of an	auton	nobile.					
2. \$	Studen	ts will	l know	abou	t the	operati	ion of	engine	e cooli	ng and	l lubri	cation		
5	systems.													
3. \$	3. Students will know about the operation of ignition, electrical, and air													
(conditioning systems.													
4. \$	Studen	ts will	know a	bout t	he prin	ciples	of tran	smissio	on and	steerin	g syste	ems.		
5. \$	Studen	ts will	know a	bout t	he prin	ciples	of susp	ension	and b	raking	system	s.		
6. 5	Studen	ts will	know a	ibout e	missio	ns fron	n autor	nobiles	and en	nergy a	lternat	ives.		
Course	e Outc	omes	:											
Upon :	succes	sful c	omple	etion o	of the	cours	e, the	stude	nt wil	l be ab	ole to:			
CO1	Expla	in the	basic la	ayout c	of an ai	ıtomot	oile and	l the fu	el syst	ems us	ed.			
CO2	Demo	nstrate	e the o	peratio	n of co	oling a	nd lub	ricatior	ı systei	ns in a	utomol	biles.		
CO3	Outlir	ne the	operat	ion of	ignitio	n, elec	trical,	and ai	r cond	itioning	g syste	ms in		
	auton	nobiles	•											
CO4	Sumn	narize	the ope	eration	of tran	ismissi	on and	steerii	ng syst	ems.				
CO5	Expla	in the	operati	on of s	uspens	sion an	id brak	ing sys	tems.					
C06	Outlir	ie the	emissio	ons froi	m auto	mobile	s and e	energy	alterna	tives.				
Contri	butio	n of C	ourse	Outco	omes t	oward	ls ach	ievem	ent of	Progr	am			
Outco	mes (]	-Lo	w, 2- I	lediu	m, 3 –	High)		70		70	70	70		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		
001	1	2	3	4	5	6	1	8	9	10	11	12		
COI	2	ব						1						
CO2	3	1	2						1					
CO3	3	2	1						1					
CO4	2	3	1							1				
CO5	2	3	1								1			
CO6	3	2	1											
					τ	JNIT I								

INTRODUCTION: Components of four-wheeler automobile chassis and body power unit, power transmission, rear-wheel drive, front-wheel drive, four-wheel drive types of automobile engines, engine construction engine lubrication, splash and pressure lubrication systems, oil filters, oil pumps, crankcase ventilation, engine service, reboring, decarburization, Nitriding of the crank shaft.

FUEL SYSTEM:

S.I. ENGINE: Fuel supply systems, Mechanical and electrical fuel pumps, carburetor

types, air filters, petrol injection.

C.I. ENGINES: Requirements of diesel injection systems, types of injection systems, fuel pump, nozzle, Alternative fuels for Automobile injection, Classification, Properties, Hybrid vehicles injection timing, testing of fuel pumps.

UNIT II

COOLING SYSTEM: Cooling Requirements, Air Cooling, Liquid Cooling, and Forced Circulation System, Radiators, Types Cooling Fans, water pumps, thermostat, evaporating cooling pressure sealed cooling antifreeze solutions.

IGNITION SYSTEM: Function of an ignition system, battery ignition system, constructional features of storage battery, autotransformer, contact breaker points, condenser and spark plug Magneto coil ignition system, electronic ignition system using contact breaker, electronic ignition using contact triggers spark advance and retard mechanism.

ELECTRICAL SYSTEM: Charging circuit, generator, current-voltage regulator starting system, Bendix drive mechanism solenoid switch, lighting systems, Horn, wiper, fuel gauge, oil pressure gauge, engine temperature indicator, etc.

UNIT III

TRANSMISSION SYSTEM: Clutches, principle, types, cone clutch, single-plate clutch, multi-plate clutch, magnetic and centrifugal clutches, fluid flywheel, Gearboxes, types, sliding mesh, construct mesh, synchromesh gearboxes, epicyclic gearbox, overdrive torque converter. Propeller shaft Hotch Kiss drive, Torque tube drive universal joint, differential rear axles, types of wheels, and tires.

STEERING SYSTEM: Steering geometry camber, castor, kingpin rake, combined angle toe in, center point steering. Types of steering mechanism Ackerman steering mechanism, Davis steering mechanism, steering gear types, steering linkages.

SUSPENSION SYSTEM: Objects of suspension systems, rigid axle suspension system, torsion bar, shock absorber, independent suspension system.

UNIT IV

BRAKING SYSTEM: Mechanical brake system, Hydraulic brake system, Master cylinder, wheel cylinder, tandem master cylinder, Requirement of brake fluid, Pneumatic and vacuum brakes.

ENGINE SERVICE: Introduction, service details of the engine cylinder head, valves, valve mechanism, piston connecting rod assembly, cylinder block, crankshaft, main bearings, engine reassembly precautions.

EMISSIONS FROM AUTOMOBILES: Pollution standards National and international Pollution Control Techniques, Energy alternatives: Solar, Photovoltaic, Hydrogen, Biomass, alcohols, LPG, CNG, liquid Fuels, and gaseous fuels, Hydrogen as a fuel for IC Engines. Their merits and demerits. Standard Vehicle maintenance practice.

TEXTBOOKS:

1. Automobile Engineering by Kripal Singh Vol. 1 & Vol. 2.

2. Automobile Engineering by K.M Gupta, Umesh publication, Vol. 1 & Vol. 2.

3.Automobile Engineering / William Crouse/TMH Distributors.

4.Automobile Engineering/P. S Gill/S.K. Kataria& Sons/New Delhi.

REFERENCE BOOKS:

1. A Textbook of Automobile Engineering by R K Rajput. Laxmi Publications.

- 2. A Textbook of Automobile Engineering By Khalil U Siddiqui New Age International.
- 3. Automobile Engineering / C Srinivasan/McGraw-Hill.
- 4. Alternative fuels of Automobiles by P.Rami Reddy, Frontline publications.

E-RESOURCES:

https://journals.sagepub.com/home/pid https://hud.libguides.com/mechanical_automotive

Course Code: METAL FORMING PROCESS (Professional Elective – VI)

Lectu	re – Tu	itorial	: 3-	0 Hou	Irs]	Intern	al Mar	ks:	40
Credit	:s:		3					I	Extern	al Mar	ks:	60
Prerec	quisite	s:										
Funda	mentals	s of for	mabilit	y of ma	aterials	s and d	ifferent	t metal	formin	ig proce	esses a	nd its
applica	tions.											
To imp	art kno	wledge	on va		enecte	ofmet	al form	ing an	d to de	velon th	ne skill	to
analys	art Kilo	r differ	cent co	nditior	species	or met		ing an	u to uc	velop ti	ic skin	10
anarys	cs unuc	,i unici		nunnon	15.							
Cours	e Obje	ctives	:									
1. S	Student	will kr	now the	e vario	us func	lament	al conc	cepts o	f metal	formin	g proce	ess
2. S	Student	will be	e unde	rstand	the va	rious p	process	paran	neters a	ind app	olied lo	ads in
3 5	Student	will h	e exn	osed t	o the	various	s proce	ess na	ramete	rs in	sheet	metal
0. 0	vorking	will c	с слр	5600 t	o une	variou	s proce	.00 pu	ramete	10 111	Sheet	meta
4 9	Student	will h	e und	erstan	d Roll	ing an	d Extr	usion	nroces	ses and	l asso	ciated
1. C	aramet	ere		cistan	u Rom	ing an	u DAti	u31011	proces	ses and	4 4550	ciateu
۲ 5 5	student	will be	under	retand	the voi	rious m	ethods	to Dr	owing r	rocesse	20	
5.0	Student	will be		of vori		ah Eno		to form	ing pro		28	
0.0		will be	aware	or vari	ous ni	gii Eile	igy Ra		ing pro	cesses.		
Cours		comes	: 1 -	41111111111111	- f 4 h -		- 41			1 4 4	1- 4	
CO1	Under	rstand	the fur	dame	ntal co	cours	of met	al form	ing	i be ab		
$\frac{001}{002}$	Know	the va	rious r	rocess	naran	neters a	and and	al ionn	ung. ads in	forging		
CO_2	Know	the va	rious p	nroce	ess na	ramete	rs and	annl	ied loa	ds in	sheet	metal
000	worki	ng.	anous	proce	500 pu	rumete	is un	i uppi	100 100		SHEET	meta
CO4	Analy	ze Rolli	ing and	l Extru	ision p	rocesse	es and	associa	ated pa	rameter	rs	
CO5	Analy	ze Drav	wing.		-				-			
CO6	Analy	ze vario	ous Hi	gh Ene	rgy Ra	te form	ing pro	ocesses	8.			
Contr	ibutio	n of Co	ourse	Outco	omes t	toward	ls ach	ievem	ent of	Progr	am	
Outco	mes (1	l – Lov	v, 2- I	lediu :	m, 3 –	High				-		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2		2		3							
CO2	2		2		3							
CO3	2		2		3							
CO4	2 3 3											
CO5	2		2		3							
CO6	2		2		3							
					I	UNIT I						
Funda	mental	s of M	letal F	ormin	g : Clas	sificati	ion of t	forming	g proce	sses- c	lassific	cation,
mecha	nisms	of me	tal for	ming:	slab	metho	d, Upp	per an	d lowe	er bour	nd an	alysis,
Deform	nation	energy	meth	od, te	mperat	ture of	f meta	1 work	king, h	ot wor	king,	Warm
workin	g, cold	workin	ng fricti	ion and	d lubri	cants.	Formal	oility li	mits, S	train ra	ates in	metal

forming Development of metallurgical structure during deformation Flow curves Plastic stressstrain relationship - plastic work - the principle of normality -incremental plastic strain. Strain rate - super plasticity

UNIT II

Forging: Classification of forging processes, forging of plate, forging of circular discs, open die and closeddie forging, forging defects, and powder metallurgy forging. Problems on flow stress, true strain and forging load.

Press tool design: Design of various press tools and dies like piercing dies, blanking dies, compound dies and progressive dies, blanking, punching, problems on Blanking and punching force, clearances, Elastic recovery and shear.

Sheet metal forming: Forming methods, bending, stretch forming, Spinning.

UNIT III

Rolling: Rolling processes, forces and geometrical relationship in rolling, simplified analysis, rolling load, rolling variables, theories of cold and hot rolling, problems and defects in rolling, torque and power calculations, Problems.

Extrusion: Classification, Hot Extrusion, Analysis of Extrusion process, defects in extrusion, extrusion of tubes and production of seamless pipes. Problems on extrusion load.

UNIT IV

Drawing: Drawing of tubes, rods, and wires: Wire drawing dies, tube drawing process, analysis of wire, deep drawing and tube drawing. Problems on draw force. Cup drawing

Advanced Metal forming processes: Electromagnetic forming. Explosive Forming, Electrohydraulic forming.

Miscellaneous Forming Processes: Coining, Thread Rolling, Tube piercing,

TEXTBOOKS:

- 1. Manufacturing Science- Amitabha Ghosh , Ashok Kumar Mallik, EWP
- 2. Fundamentals of Metal Forming Processes B.L. Juneja
- 3. Mechanical Metallurgy by G. E. Dieter, McGraw-Hill.

REFERENCE BOOKS:

1. Metal Forming: Fundamentals and Applications by TaylanAltan (ASM Series in Metal Processing)

2. Introduction to Industrial Mechanical Working Process by G. W. Rowe

3. Manufacturing Technology (Foundry, Forming and Welding) by P. N. Rao, TMH

4. Materials & Processes In Manufacturing By E.Paul De Germo, J T Black & Ronald A Koshav

5. Modern Control Engineering by Ogata, PHI Publ. Prentice-Hall of India Pvt. Ltd.

E-RESOURCES:

https://www.sciencedirect.com/topics/materials-science/metal-forming-process https://www.springer.com/journal/12289

Course Code: PROJECT MANAGEMENT (Professional Elective – VI)

Lectur	ure – Tutorial: 3-0 Hours Internal Mark											40		
Credit	s:		3				E	xtern	al Mar	ks:	60			
Prerec	uisite	s:												
Course	e Obje	ctives	:											
1. Stu	ıdent w	vill kno	w the t	ypes o	f projec	cts and	benefi	ts of p	roject n	nanage	ment.			
2. Stu	tudent will understand the job role of a Project manager.													
3. Stu	udent will be able to conduct the feasibility studies of any project.													
4. Stu	tudent will understand how to manage the project management activities.													
5. Stu	Student will be able to plan for the completion of the project if the project time													
nee	eeds to be reduced.													
6. Stu	ıdent w	vill get	the kno	owledg	e of ris	k mana	agemen	nt.						
Course	e Outc	omes	:											
Upon a	succes	sful c	omple	tion o	of the	cours	e, the	stude	nt wil	l be at	ole to:			
CO1	Under	rstand	the sig	nificar	nce of p	project	manag	gement	its obj	ectives	and v	arious		
	phases involved in project management life cycle.													
CO2	Role and responsibilities of a Project Manager													
CO3	Gain issues	knowle 3.	edge reg	gardin	g proje	ct feasi	ibility s	study a	nd var	ious O	rganiza	itional		
CO4	Able t	o apply	y variou	us tool	s like C	CPM &	PERT i	n proje	ct man	ageme	nt.			
CO5	Under resou	rstand rces.	how	to spe	eed up	o a pr	oject's	timeli	ne by	addin	g add	itional		
CO6	Gain	knowle	dge in	risk m	anagen	nent ai	nd role	of IT ir	n projec	et mana	agemer	ıt.		
Contri	ibutio	n of Co	ourse	Outco	omes t	oward	ls achi	ievem	ent of	Progr	am			
Outco	mes (1	l – Lov	v, 2- N	lediu	m, 3 –	High)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	2											3		
CO2	2											3		
CO3	2											3		
CO4	2											3		
CO5	2											3		
CO6	2											3		
					τ	JNIT I								

Basics of Project Management: Introduction, Evolution of project management, Objectives of project management, Types of projects, Types of project delays, Benefits of project Management, Stake holders of a project.

Project Management Life cycle: Phases of Project Management Life Cycle, Role of a Project Manager (PM).

UNIT II

Project Feasibility study: Introduction, Pre-Feasibility Study, Types of feasibility,

Steps of feasibility study.

Project Organizational Structures: Introduction, Concept of Organizational Structure, Essential qualities of a project manager, Organizational structure for projects, Project management offices.

UNIT III

Techniques of Project Management: Introduction, simple network techniques, construction rules of drawing, Fulkerson's rule, Critical path method (CPM)- floats, critical path, project duration, PERT: Introduction, different Time estimates, expected time, variance, expected project duration and probability of completion.

Crashing of Project network: Introduction, General guidelines for network crashing, Types of crashing, problems

UNIT IV

Project Risk Management and failure: Introduction, Types of Risk, Steps in Risk Management, Risk Assessment, Project failure-causes of project failure.

Project Management Information System: Introduction, Project Management Information System (PMIS), Planning of PMIS.

TEXTBOOKS:

- 1. P. Panneerselvam, R. Senthil kumar, "Project Management" PHI 2009
- 2. Ramakrishna &Kamaraju "Essentials of Project Management" Kindle Edition PHI, 2010

REFERENCE BOOKS:

- 1. Harold Kerzner "Project Management- A system approach to planning, scheduling & Controlling" Eleventh Edition, wiley.
- 2. Thomas Erickson & P. V. Khatri "Project Management" Global Vision Publishing House (2015).

E-RESOURCES:

https://www.projectmanager.com/resources